Advertisement

Knowledge and Information Systems

, Volume 30, Issue 2, pp 457–491 | Cite as

Knowledge management in image-based analysis of blood vessel structures

  • Iván Macía
  • Manuel GrañaEmail author
  • Celine Paloc
Regular Paper

Abstract

We have detected the lack of a widely accepted knowledge representation model in the area of Blood Vessel analysis. We find that such a tool is needed for the future development of the field and our own research efforts. It will allow easy reuse of software pieces through appropriate abstractions, facilitating the development of innovative methods, procedures and applications. We include a thorough review of vascular morphology image analysis. After the identification of the key representation elements and operations, we propose a Vessel Knowledge Representation (VKR) model that would fill this gap. We give insights into its implementation based on standard Object-Oriented Programming tools and paradigms. The VKR would easily integrate with existing medical imaging and visualization software platforms, such as the Insight ToolKit (ITK) and Visualization Toolkit (VTK).

Keywords

Vessel analysis Knowledge representation Medical image 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adalsteinsson D, Sethian JA (1995) A fast level set method for propagating interfaces. J Comput Phys 118(2): 269–277CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Agam G, Armato SG III, Wu C (2005) Vessel tree reconstruction in thoracic ct scans with application to nodule detection. IEEE Trans Med Imaging 24: 486–499CrossRefGoogle Scholar
  3. 3.
    Agin GJ, Binford TO (1976) Computer description of curved objects. IEEE Trans on Comput 25(4): 439–449CrossRefzbMATHGoogle Scholar
  4. 4.
    Aharinejad S, Schreiner W, Neumann F (1998) Morphometry of human coronary arterial trees. Anat Rec 251: 50–59CrossRefGoogle Scholar
  5. 5.
    Akitaa K, Kugaa H (1982) A computer method of understanding ocular fundus images. Pattern Recogn 15(6): 431–443CrossRefGoogle Scholar
  6. 6.
    Antiga L, Ene-Iordache B, Remuzzi A (2003) Computational geometry for patient-specific reconstruction and meshing of blood vessels from mr and ct angiography. IEEE Trans Med Imaging 22(5): 674–684CrossRefGoogle Scholar
  7. 7.
    Antiga L, Steinman DA (2004) Robust and objective decomposition and mapping of bifurcating vessels. IEEE Trans Med Imaging 23(6): 704–713CrossRefGoogle Scholar
  8. 8.
    Aronovich L, Spiegler I (2010) Bulk construction of dynamic clustered metric trees. Knowl Inf Syst 22(2): 211–244CrossRefGoogle Scholar
  9. 9.
    Aylward SR, Bullitt E (2002) Initialization, noise, singularities, and scale in height ridge traversal for tubular object centerline extraction. IEEE Trans Med Imaging 21(2): 61–75CrossRefGoogle Scholar
  10. 10.
    Bezold L (2010, January) Coronary artery anomaliesGoogle Scholar
  11. 11.
    Bühler K, Felkel P, La Cruz A (2002) Geometric methods for vessel visualization and quantification—a survey. In: Geometric modelling for scientific visualization. Springer, pp 399–420Google Scholar
  12. 12.
    Blum H (1967) A transformation for extracting new descriptors of shape. In: Wathen-Dunn W (eds) Models for the perception of speech and visual form. MIT Press, Cambridge, pp 362–380Google Scholar
  13. 13.
    Boskamp T, Rinck D, Link F, Knmmerlen B, Stamm G, Mildenberger P (2004) New vessel analysis tool for morphometric quantification and visualization of vessels in ct and mr imaging datasets. Radiographics 24: 287–297CrossRefGoogle Scholar
  14. 14.
    Bouix S, Siddiqi K, Tannenbaum A (2005) Flux driven automatic centerline extraction. Med Image Anal 9(3): 209–221CrossRefGoogle Scholar
  15. 15.
    Brandes U, Eiglsperger M, Herman I, Himsolt M, Marshall MS (2002) Graphml progress report: structural layer proposal. In: Graph drawing. International symposium No 9, Vienna, LNCS, vol 2265, pp 501–512Google Scholar
  16. 16.
    Bullitt E, Aylward S, Smith K, Mukherji S, Jiroutek M, Muller K (2001) Symbolic description of intracerebral vessels segmented from magnetic resonance angiograms and evaluation by comparison with x-ray angiograms. Med Image Anal 5: 157–169CrossRefGoogle Scholar
  17. 17.
    Bullitt E, Gerig G, Aylward S, Joshi S, Smith K, Ewend M, Lin W (2003) Vascular attributes and malignant brain tumors. In: Medical image computing and computer-assisted intervention (MICCAI 2003), LNCS, vol 2878. Springer, pp 671–679Google Scholar
  18. 18.
    Bullitt E, Jung I, Muller K, Gerig G, Aylward S, Joshi S, Smith K, Lin W, Ewend M (2004) Determining malignancy of brain tumors by analysis of vessel shape. In: Medical image computing and computer-assisted intervention (MICCAI 2004), LNCS, vol 3217, pp 645–653Google Scholar
  19. 19.
    Bullitt E, Muller KE, Jung I, Lin W, Aylward S (2005) Analyzing attributes of vessel populations. Med Image Anal 9: 39–49CrossRefGoogle Scholar
  20. 20.
    Can A, Shen H, Turner JN, Tanenbaum HL, Roysam B (1999) Rapid automated tracing and feature extraction from retinal fundus images using direct exploratory algorithms. IEEE Trans Inf Technol Biomed 3: 125–138CrossRefGoogle Scholar
  21. 21.
    Carrillo JF, Hernández-Hoyos M, Dávila-Serrano EE, Orkisz M (2007) Recursive tracking of vascular tree axes in 3d medical images. Int J Comput Assist Radiol Surg 1(6): 331–339CrossRefGoogle Scholar
  22. 22.
    Creager MA, Lüscher TF, Cosentino F, Beckman JA (2003) Diabetes and vascular disease: pathophysiology, clinical consequences, and medical therapy: Part i. Circulation 108: 1527–1532CrossRefGoogle Scholar
  23. 23.
    Cumming G, Harding LK, Horsfield K, Prowse K, Singhal SS, Woldenberg MJ (1970) Morphological aspects of the pulmonary circulation and of the airway. Fluid Dyn Blood Circ Respir Flow 65: 230–236Google Scholar
  24. 24.
    Deschamps T, Cohen L (2001) Fast extraction of minimal paths in 3d images and applications to virtual endoscopy. Med Image Anal 5(4): 281–299CrossRefGoogle Scholar
  25. 25.
    Dijkstra EW (1959) A note on two problems in connection with graphs. Numer Math 1: 269–271CrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    Dos-Reis G, Järvi J (2005) What is generic programming? In: Proceedings of the 1st international workshop of library-centric software design (LCSD’05)Google Scholar
  27. 27.
    Felkel P, Kanitsar A, Fuhrmann AL, Wegenkittl R (2002) Surface models of tube trees. In: Computer graphics international, pp 70–77Google Scholar
  28. 28.
    Folkman J (2000) Incipient angiogenesis. J Natl Cancer Inst 92: 94–95CrossRefGoogle Scholar
  29. 29.
    Frangi A, Niessen W, Hoogeveen R, van Walsum T, Viergever M (1999) Model-based quantitation of 3-d magnetic resonance angiographic images. IEEE Trans Med Imaging 18(10): 946–956CrossRefGoogle Scholar
  30. 30.
    Frangi A, Niessen WJ, Nederkoorn PJ, van Elgersma O, Viergever MA (2000) Three-dimensional model-based stenosis quantification of the carotid arteries from contrast-enhanced mr angiography. In: IEEE workshop on mathematical methods in biomedical image analysisGoogle Scholar
  31. 31.
    Fridolin I, Lindberg LG (2000) Optical non-invasive technique for vessel imaging: I experimental results. Phys Med Biol 45(12): 3765–3778CrossRefGoogle Scholar
  32. 32.
    Gamma E, Helm R, Johnson R, Vlissides J (2000) Design patterns: elements of reusable object-oriented software. Addison-Wesley, ReadingGoogle Scholar
  33. 33.
    Gerig G, Koller T, Székely G, Brechbuhler C, Kubler O (1993) Symbolic description of 3d structures applied to cerebral vessel tree obtained from mr angiography volume data. In: Information processing in medical imaging’93, LNCS 687, pp 94–111Google Scholar
  34. 34.
    Hernández-Hoyos M, Orlowski P, Piatkowska-Janko E, Bogorodzki P, Orkisz M (2006) Vascular centerline extraction in 3d mr angiograms for phase contrast mri blood flow measurement. Int J Comput Assist Radiol Surg 1(1): 51–61CrossRefGoogle Scholar
  35. 35.
    Heron M, Hoyert DL, Murphy SL, Xu J, Kochanek KD, Tejada-Vera B (2009) Deaths: final data for 2006. Report, Division of Vital Statistics, US Dep. of Health and Human ServicesGoogle Scholar
  36. 36.
    Holash J, Maisonpierre PC, Compton D, Boland P, Alexander CR, Zagzag D, Yancopoulos GD, Wiegand SJ (1999) Vessel cooption, regression and growth in tumors mediated by angiopoietins and vegf. Science 284(5422): 1994–1998CrossRefGoogle Scholar
  37. 37.
    Horsfield K (1978) Morphometry of the small pulmonary arteries in man. Circ Res 42: 593–597Google Scholar
  38. 38.
    Horsfield K (1990) Diameters, generations, and orders of branches in the bronchial tree. J Appl Physiol 68: 457–461Google Scholar
  39. 39.
    Horsfield K, Gorden I (1981) Morphometry of pulmonary veins in man. Lung 159: 211–218CrossRefGoogle Scholar
  40. 40.
    Huang W, Yen RT, McLaurine M, Bledsoe G (1996) Morphometry of the human pulmonary vasculature. J Appl Physiol 81: 2123–2133Google Scholar
  41. 41.
    Jain RK (2001) Normalizing tumor vasculature with anti-angiogenic therapy: a new paradigm for combination therapy. Nat Med 7: 987–998CrossRefGoogle Scholar
  42. 42.
    Kang DG, Suh DC, Ra JB (2009) Three-dimensional blood vessel quantification via centerline deformation. IEEE Trans Med Imaging 28(3): 405–414CrossRefGoogle Scholar
  43. 43.
    Karau KL, Krenz GS, Dawson CA (2001) Branching exponent heterogeneity and wall shear stress distribution in vascular trees. AJP Heart Circ Physiol 280: 1256–1263Google Scholar
  44. 44.
    Kassab GS (2006) Scaling laws of vascular trees: of form and function. AJP Heart Circ Physiol 290: 894–903CrossRefGoogle Scholar
  45. 45.
    Kassab GS, Rider CA, Tang NJ, Fung YC (1993) Morphometry of pig coronary arterial trees. Am J Physiol 265: 350–365Google Scholar
  46. 46.
    Kirbas C, Quek F (2004) A review of vessel extraction techniques and algorithms. ACM Comput Surv 36(2): 81–121CrossRefGoogle Scholar
  47. 47.
    Klein A, Renema WKJ, Oostveen LJ, Schultze Kool LJ, Slump CH (2008) A segmentation method for stentgrafts in the abdominal aorta from ecg-gated cta data. In: Hu XP, Clough AV (eds) Proceedings of SPIE medical imaging 2008: physiology, function, and structure from medical images, vol 6916Google Scholar
  48. 48.
    Klein R, Schilling A, Strasser W (1999) Reconstruction and simplification of surfaces from contours. In: Proceedings of 7th Pacific conference on computer graphics and applicationsGoogle Scholar
  49. 49.
    Kok AJF, van Liere R (2007) A multimodal virtual reality interface for 3d interaction with vtk. Knowl Inf Syst 13(2): 197–219CrossRefGoogle Scholar
  50. 50.
    Lange T, Eulenstein S, Huumlnerbein M, Schlag PM (2003) Vessel-based non-rigid registration of mr/ct and 3d ultrasound for navigation in liver surgery. Comput Assist Surg 8(5): 228–240CrossRefGoogle Scholar
  51. 51.
    Lee J, Beighley P, Ritman E, Smith N (2007) Automatic segmentation of 3d micro-ct coronary vascular images. Med Image Anal 11(6): 630–647CrossRefGoogle Scholar
  52. 52.
    Legarreta JH, Boto F, Macía I, Maiora J, García G, Paloc C, Graña M, de Blas M (2010) Hybrid decision support system for endovascular aortic aneurism repair follow-up. In: Proceedings of 5th international conference on hybrid artificial intelligent systems (HAIS’10) (page submitted)Google Scholar
  53. 53.
    Lesage D, Angelini E, Bloch I, Funka-Lea G (2008) Medial-based bayesian tracking for vascular segmentation: application to coronary arteries in 3d ct angiography. In: IEEE international symposium on biomedical Imaging (ISBI’08), pp 268–271Google Scholar
  54. 54.
    Lesage D, Angelini ED, Bloch I, Funka-Lea G (2009) A review of 3d vessel lumen segmentation techniques: models, features and extraction schemes. Med Image Anal 13(6): 819–845CrossRefGoogle Scholar
  55. 55.
    Lin Q (2003) Enhancement, extraction and visualization of 3D volume data. PhD thesis, Institute of Technology, Linköpings UniversitetGoogle Scholar
  56. 56.
    Liu S, Duffy AHB, Whitfield RI, Boyle IM (2009) Integration of decision support systems to improve decision support performance. Knowl Inf Syst 22(3): 261–286CrossRefGoogle Scholar
  57. 57.
    Long B, Zhang Z, Yu PS (2010) A general framework for relation graph clustering. Knowl Inf Syst 24(3): 393–413CrossRefGoogle Scholar
  58. 58.
    Lorensen WE, Cline HE (1987) Marching cubes: a high resolution 3d surface construction algorithm. Comput Graph 21(4): 163–169CrossRefGoogle Scholar
  59. 59.
    Lorigo LM, Faugeras O, Grimson WEL, Keriven R, Kikinis R, Westin CF (1999) Co-dimension 2 geodesic active contours for mra segmentation. In: IPMI, pp 126–139Google Scholar
  60. 60.
    de Bruijne MM, van Ginneken B, Niessen WJ, Loog M, Viergever M (2003) Model-based segmentation of abdominal aortic aneurysms in cta images. In: Proceedings of SPIE medical imaging, vol 5032, pp 1560–1571Google Scholar
  61. 61.
    Macía I, Graña M, Paloc C, Boto F (2010) Neural network-based detection of type ii endoleaks in cta images after endovascular repair. Comput Biol Med (page submitted)Google Scholar
  62. 62.
    Macía I, Legarreta JH, Paloc C, Graña M, Maiora J, García G, de Blas M (2009) Segmentation of abdominal aortic aneurysms in ct images using a radial model approach. In: Corchado E, Yin H (eds) Proceedings of intelligent data engineering and automated learning, 10th international conference (IDEAL’09), vol 5788 of Lecture Notes in Computer Science (LNCS). Springer, Burgos Spain, pp 664–671Google Scholar
  63. 63.
    Macía I, Wald D, Paloc C (2008) Extraction and analysis of patient-specific hepatic anatomy from mr images. In: Int J Comput Assist Radiol Surg. Proceedings of the 22nd international congress and exhibition (CARS’08), Barcelona, vol Suppl. 1, pp 399–401Google Scholar
  64. 64.
    Maiora J, García G, Macía I, Legarreta JH, Boto F, Paloc C, Graña M, Sánchez J (2010) Thrombus volume change visualization after endovascular abdominal aortic aneurysm repair. In: Proceedings of 5th international conference on hybrid artificial intelligent systems (HAIS’10) (page submitted)Google Scholar
  65. 65.
    Maiora J, García G, Macía I, Legarreta JH, Paloc C, de Blas M, Graña M (2010) Thrombus change detection after endovascular abdominal aortic aneurysm repair. In: Proceedings of computer assisted radiology and surgery (CARS’10) (page in press)Google Scholar
  66. 66.
    Maiora J, García G, Tapia A, Macía I, Legarreta JH, Paloc C, Graña M, de Blas M (2009) Stent graft change detection after endovascular abdominal aortic aneurysm repair. In: Corchado E, Yin H (eds) Intelligent data engineering and automated learning—IDEAL 2009 10th international conference, proceedings, vol 5788 of Lecture Notes in Computer Science (LNCS), p 826, Universidad de Burgos, Burgos, Spain. SpringerGoogle Scholar
  67. 67.
    Martin K, Hoffman B (2008) Mastering CMake, 4th edn. Kitware Inc., USAGoogle Scholar
  68. 68.
    Metzena JH, Krögerb T, Schenk A, Zidowitz S, Peitgen HO, Jiang X (2009) Matching of anatomical tree structures for registration of medical images. Image Vis Comput 27(7): 923–933CrossRefGoogle Scholar
  69. 69.
    Mille J, Cohen LD (2009) Deformable tree models for 2d and 3d branching structures extraction. In: IEEE conference on computer vision and pattern recognition workshopsGoogle Scholar
  70. 70.
    Millán RD, Dempere-Marco L, Pozo JM, Cebral JR, Frangi AF (2007) Morphological characterization of intracranial aneurysms using 3-d moment invariants. IEEE Trans Med Imaging 26(9): 1270–1282CrossRefGoogle Scholar
  71. 71.
    Miyazaki M, Ichinose N, Sugiura S, Kanazawa H, Machida Y, Kassai Y (2005) A novel mr angiography technique: speed acquisition using half-fourier rare. J Magn Reson Imaging 8(2): 505–507CrossRefGoogle Scholar
  72. 72.
    Murray C (1926) The physiological principle of minimum work, i: the vascular system and the cost of blood volume. Proc Natl Acad Sci USA 12(3): 207–214CrossRefGoogle Scholar
  73. 73.
    Näf M (1996) 3D Voronoi Skeletons: a Semicontinuous Implementation of the ’Symmetric Axis Transform’ in 3D Space. PhD thesis, ETH ZürichGoogle Scholar
  74. 74.
    Nilsson O, Breen D, Museth K (2005) Surface reconstruction via contour metamorphosis: an eulerian approach with lagrangian particle tracking. In: Proceedings of 16th IEEE visualization (VIS’05)Google Scholar
  75. 75.
    Nordsletten DA, Blackett S, Bentley MD, Ritman EL, Smith NP (2006) Structural morphology of renal vasculature. AJP Heart Circ Physiol 291: 296–309CrossRefGoogle Scholar
  76. 76.
    O’Donnell T, Boult T, Fang X, Gupta A (1994) The extruded generalized cylinder: a deformable model for object recovery. In: Proceedings of computer vision and pattern recognition (CVPR’94), pp 174–181Google Scholar
  77. 77.
    Oka S, Nakai M (1987) Optimality principle in vascular bifurcation. Biorheology 24(6): 737–751Google Scholar
  78. 78.
    Olabarriaga S, Breeuwer M, Niessen WJ (2003) Minimum cost path algorithm for coronary artery central axis tracking in ct images. In: Medical image computing and computer assisted intervention (MICCAI’03)Google Scholar
  79. 79.
    Orkisz M, Flórez-Valencia L, Hernández-Hoyos M (2008) Models, algorithms and applications in vascular image segmentation. Mach Graph Vis 17(1/2): 5–33Google Scholar
  80. 80.
    Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: algorithms based on hamilton-jacobi formulations. J Comput Phys 79: 12–49CrossRefzbMATHMathSciNetGoogle Scholar
  81. 81.
    Palágyi K, Sorantin E, Balogh E, Kuba A, Halmai C, Erdohelyi B, Hausegger K (2001) A sequential 3d thinning algorithm and its medical applications. In: Proceedings of the 17th international conference on information processing in medical imaging (IPMI’01), LNCS, vol 2082. Springer, pp 409–415Google Scholar
  82. 82.
    Paradowski M, Kwasnicka H, Borysewicz K (2009) Capillary blood vessel tortuosity measurement using graph analysis. In: Knowledge-based and intelligent information and engineering systems, 13th international conference (KES 2009)Google Scholar
  83. 83.
    Park J, Lee S (2010) Keyword search in relational databases. Knowl Inf Syst (in print)Google Scholar
  84. 84.
    Piccinelli M, Veneziani A, Steinman DA, Remuzzi A, Antiga L (2009) A framework for geometric analysis of vascular structures: application to cerebral aneurysms. Trans Med Imaging 28(8): 1141–1155CrossRefGoogle Scholar
  85. 85.
    Pizer SM, Eberly D, Morse BS, Fritsch DS (1998) Zoom-invariant figural shape: the mathematics of cores. Comput Vis Image Underst 69: 55–71CrossRefGoogle Scholar
  86. 86.
    Pizer SM, Siddiqi K, Székely G, Damon JN, Zucker SW (2003) Multi-scale medial loci and their properties. Int J Comput Vis 55(2–3): 155–179CrossRefGoogle Scholar
  87. 87.
    Pock T, Janko C, Beichel R, Bischof H (2005) Multiscale medialness for robust segmentation of 3d tubular structures. In: 10th Computer vision winter workshopGoogle Scholar
  88. 88.
    Puig A, Tost D, Navazo I (2000) Hybrid model for vascular tree structures. In: van Leeuw LR, de W (eds) Data visualization 2000: joint eurographics and IEEE TCVG symposium on visualization, Amsterdam. Springer, Berlin, pp 125–135Google Scholar
  89. 89.
    Quek FKH, Kirbas C (2001) Vessel extraction in medical images by wave-propagation and traceback. IEEE Trans Med Imaging 20(2): 117–131CrossRefGoogle Scholar
  90. 90.
    Reichenbach JR, Venkatesan R, Schillinger DJ, Kido DK, Haacke EM (1997) Small vessels in the human brain: Mr venography with deoxyhemoglobin as an intrinsic contrast agent. Radiology 204: 272–277Google Scholar
  91. 91.
    Ritman EL (2005) Micro-computed tomography of the lungs and pulmonary-vascular system. Proc Am Thorac Soc 2: 477–480CrossRefGoogle Scholar
  92. 92.
    Sangalli LM, Vantini S (2008) Registration of functional data: aligning inner carotid artery centerlines. In: Proceedings of the XLIV Riunione Scientifica Società Italiana di StatisticaGoogle Scholar
  93. 93.
    Santamore WP, Bove AA (2008) Why arteries are the size they are. J Appl Physiol 104: 1259CrossRefGoogle Scholar
  94. 94.
    Schaap M, Metz CT, van Walsum T, van der Giessen AG, Weustink AC, Mollet NR, Bauer C, Bogunovic H, Castro C, Deng X, Dikici E, O’Donnell T, Frenay M, Friman O, Hernández Hoyos M, Kitslaar PH, Krissian K, Kühnel C, Luengo-Oroz MA, Orkisz M, Smedby Ö, Styner M, Szymczak A, Tek H, Wang C, Warfield SK, Zhang Y, Zambal S, Krestin GP, Niessen WJ (2009) Standardized evaluation methodology and reference database for evaluating coronary artery centerline extraction algorithms. Med Image Anal 13(5): 701–714CrossRefGoogle Scholar
  95. 95.
    Schroeder W, Martin K, Lorensen B (2006) The visualization toolkit: an object-oriented approach to 3D graphics, 4th edn. Kitware, Clifton ParkGoogle Scholar
  96. 96.
    Schwarz M, Nguyen MP, Kiencke U, Heilmann C, Klemm R, Benk C, Beyersdorf F, Busch HJ (2008) Integration of the circle of willis into avolio’s model of the arterial hemodynamics. In: 6th IASTED international conference on biomedical engineeringGoogle Scholar
  97. 97.
    Selle D, Preim B, Schenk A, Peitgen HO (2002) Analysis of vasculature for liver surgical planning. IEEE Trans Med Imaging 21: 1344–1357CrossRefGoogle Scholar
  98. 98.
    Sherman TF (1981) On connecting large vessels to small: the meaning of Murray’s law. J Gen Physiol 78: 431–453CrossRefGoogle Scholar
  99. 99.
    Siddiqi K, Kimia BB (1996) A shock grammar for recognition. cvpr’96:507–513, san francisco, ca, ieee. In: IEEE computer vision and pattern recognition (CVPR’96), pp 507–513Google Scholar
  100. 100.
    Siddiqi K, Pizer S (2008) Medial representations: mathematics, algorithms and applications. Springer, ISBN 978-1402086571Google Scholar
  101. 101.
    Singhal S, Henderson R, Horsfield K, Harding K, Cumming G (1973) Morphometry of the human pulmonary arterial tree. Circ Res 33: 190–197Google Scholar
  102. 102.
    Sones FM, Shirey EK (1962) Cine coronary arteriography. Mod Concepts Cardiovasc Dis 31: 735–738Google Scholar
  103. 103.
    Strahler AN (1952) Hypsometric (area-altitude) analysis of erosional topology. Geol Soc Am Bull 63(11): 1117–1142CrossRefGoogle Scholar
  104. 104.
    Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2007) Influence of wall elasticity in patient-specific hemodynamic simulations. Comput Fluids 36(1): 160–168CrossRefzbMATHGoogle Scholar
  105. 105.
    van Bemmel C, Wink O, Verdonck B, Viergever M, Niessen W (2003) Blood pool contrast-enhanced mra: improved arterial visualization in the steady state. IEEE Trans Med Imaging 22(5): 645–652CrossRefGoogle Scholar
  106. 106.
    van Herzeele I, Aggarwal R, Malik I (2009) Use of simulators in vascular training. Heart 95: 613–614CrossRefGoogle Scholar
  107. 107.
    van Ooijen PMA, de Jonge G, Oudkerk M (2007) Coronary fly-through or virtual angioscopy using dual-source mdct data. Eur Radiol 17(11): 2852–2859CrossRefGoogle Scholar
  108. 108.
    Vukadinovic D, van Walsum T, Manniesing R, Rozie S, Hameeteman R, de Weert TT, van der Lugt A, Niessen WJ (2010) Segmentation of the outer vessel wall of the common carotid artery in cta. IEEE Trans 29(1): 65–76Google Scholar
  109. 109.
    Wang S, Chen J, Yang X, Zhang X (2008) Patient-specific hemodynamic analysis for cerebral aneurysm. In: Proceedings of 2nd international conference on bioinformatics and biomedical engineering (ICBBE’08)Google Scholar
  110. 110.
    Wilson CM, Cocker KD, Moseley MJ, Paterson C, Clay ST, Schulenburg WE, Mills MD, Ells AL, Parker KH, Quinn GE, Fielder AR, Ng J (2008) Computerized analysis of retinal vessel width and tortuosity in premature infants. Investig Ophthalmol Vis Sci 49(8): 3577–3585CrossRefGoogle Scholar
  111. 111.
    Wink O, Niessen WJ, Viergever MA (2004) Multiscale vessel tracking. IEEE Trans Med Imaging 23(1): 130–133CrossRefGoogle Scholar
  112. 112.
    Wischgoll T, Choy JS, Kassab GS (2009) Extraction of morphometry and branching angles of porcine coronary arterial tree from ct images. AJP Heart Circ Physiol 297: 1949–1955CrossRefGoogle Scholar
  113. 113.
    Witt N, Wong TY, Hughes AD, Chaturvedi N, Klein BE, Evans R, McNamara M, Thom SAM, Klein R (2006) Abnormalities of retinal microvascular structure and risk of mortality from ischemic heart disease and stroke. Hypertension 47: 975–981CrossRefGoogle Scholar
  114. 114.
    Woodrum DA, Romano AJ, Lerman A, Pandya UH, Brash D, Rossman PJ, Lerman LO, Ehman RL (2006) Vascular wall elasticity measurement by magnetic resonance imaging. Magn Reson Med 56: 593–600CrossRefGoogle Scholar
  115. 115.
    Worz S, Rohr K (2007) Segmentation and quantification of human vessels using a 3-d cylindrical intensity model. IEEE Trans Image Process 16(8): 1994–2004CrossRefMathSciNetGoogle Scholar
  116. 116.
    Wu X, Kumar V, Quinlan JR, Ghosh J, Yang Q, Motoda H, McLachlan GJ, Ng A, Liu B, Yu PS, Zhou ZH, Steinbach M, Hand DJ, Steinberg D (2008) Top 10 algorithms in data mining. Knowl Inf Syst 14(1): 1–37CrossRefGoogle Scholar
  117. 117.
    Yang J, Yu LX, Rennie MY, Sled JG, Henkelman RM (2010) Comparative structural and hemodynamic analysis of vascular trees. AJP Heart Circ Physiol 298: 1249–1259CrossRefGoogle Scholar
  118. 118.
    Yang Q, Liu J, Barnes SRS, Wu Z, Li K, Neelavalli J, Hu J, Haacke EM (2009) Imaging the vessel wall in major peripheral arteries using susceptibility-weighted imaging. J Magn Reson Imaging 30(2): 357–365CrossRefGoogle Scholar
  119. 119.
    Yoo TS, Ackerman MJ, Lorensen WE, Schroeder W, Chalana V, Aylward S, Metaxas D, Whitaker R (2002) Engineering and algorithm design for an image processing api: a technical report on itk—the insight toolkit. Stud Health Technol Inf 85: 586–592Google Scholar
  120. 120.
    Zhou L, Rzeszotarski MS, Singerman LJ, Chokreff JM (1994) The detection and quantification of retinopathy using digital angiogram. IEEE Trans Med Imaging 13: 619–626CrossRefGoogle Scholar
  121. 121.
    Zhou Y, Kassab GS, Molloi S (1999) On the design of the coronary arterial tree: a generalization of Murray’s law. Phys Med Biol 44: 2929–2945CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  1. 1.Vicomtech, Visual Communications Technologies CentreSan SebastianSpain
  2. 2.Grupo de Inteligencia ComputacionalUPV/EHUSan SebastianSpain

Personalised recommendations