Knowledge and Information Systems

, Volume 27, Issue 3, pp 419–450 | Cite as

User-centric query refinement and processing using granularity-based strategies

  • Yi Zeng
  • Ning Zhong
  • Yan Wang
  • Yulin Qin
  • Zhisheng Huang
  • Haiyan Zhou
  • Yiyu Yao
  • Frank van Harmelen
Regular Paper

Abstract

Under the context of large-scale scientific literatures, this paper provides a user-centric approach for refining and processing incomplete or vague query based on cognitive- and granularity-based strategies. From the viewpoints of user interests retention and granular information processing, we examine various strategies for user-centric unification of search and reasoning. Inspired by the basic level for human problem-solving in cognitive science, we refine a query based on retained user interests. We bring the multi-level, multi-perspective strategies from human problem-solving to large-scale search and reasoning. The power/exponential law-based interests retention modeling, network statistics–based data selection, and ontology-supervised hierarchical reasoning are developed to implement these strategies. As an illustration, we investigate some case studies based on a large-scale scientific literature dataset, DBLP. The experimental results show that the proposed strategies are potentially effective.

Keywords

User interests retention Unifying search and reasoning Granularity Starting point Multi-level completeness Multi-level specificity Multiple perspectives 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aleman-Meza B, Hakimpour F, Arpinar IB, Sheth AP (2007) Swetodblp ontology of computer science publications. Web Semant Sci Serv Agents World Wide Web 5(3): 151–155CrossRefGoogle Scholar
  2. 2.
    Anderson JR, Schooler LJ (1991) Reflections of the environment in memory. Psychol Sci 2(6): 396–408CrossRefGoogle Scholar
  3. 3.
    Antoniou G, van Harmelen F (2008) A semantic web primer. 2. The MIT Press, MassachusettsGoogle Scholar
  4. 4.
    Arnold SE (2001) Rough sets, ants, and mereology: a new approach to knowledge management. Information World Review, submitted on August 2001Google Scholar
  5. 5.
    Barabási A (2002) Linked: the new science of networks. Perseus Publishing, MassachusettsGoogle Scholar
  6. 6.
    Bargiela A, Pedrycz W (2002) Granular computing: an introduction. 1. Kluwer Academic, DordrechtGoogle Scholar
  7. 7.
    Berners-Lee T, Fischetti M (1999) Weaving the web: the original design and ultimate destiny of the world wide web by its inventor. Harper, SanFranciscoGoogle Scholar
  8. 8.
    Bhatia SK (1992) Selection of search terms based on user profile. In: Proceedings of the 1992 ACM/ SIGAPP symposium on applied computing: technological challenges of the 1990’s. ACM Press, Missouri, USA, pp 224–233Google Scholar
  9. 9.
    Cannataro M, Talia D (2003) The knowledge grid. Commun ACM 46(1): 89–93CrossRefGoogle Scholar
  10. 10.
    Carnielli WA, del Cerro LF, Lima-Marques M (1991) Contextual negations and reasoning with contradictions. In: Proceedings of the 12th international joint conference on artificial intelligence, pp 532–537Google Scholar
  11. 11.
    Ceri S (2009) Search computing. In: Proceedings of the 2009 IEEE international conference on data engineering. IEEE Press, pp 1–3Google Scholar
  12. 12.
    Collins AM, Quillian MR (1969) Retrieval time from semantic memory. J Verbal Learn Verbal Behav 8: 240–247CrossRefGoogle Scholar
  13. 13.
    Daoud M, Tamine-Lechani L, Boughanem M (2009) Towards a graph-based user profile modeling for a session-based personalized search. Knowl Inf Syst 21(3): 365–398CrossRefGoogle Scholar
  14. 14.
    Ebbinghaus H (1913) Memory: a contribution to experimental psychology Hermann Ebbinghaus. Teachers College, Columbia University, New YorkCrossRefGoogle Scholar
  15. 15.
    Fensel D, van Harmelen F (2007) Unifying reasoning and search to web scale. IEEE Internet Computing 11(2):96, 94–95Google Scholar
  16. 16.
    Fensel D, van Harmelen F, Andersson B, Brennan P, Cunningham H, Valle ED, Fischer F, Huang Z, Kiryakov A, Lee TK, School L, Tresp V, Wesner S, Witbrock M, Zhong N (2008) Towards larkc: a platform for web-scale reasoning. In: Proceedings of the 2008 IEEE international conference on semantic computing. Washington, DC, USA, pp 524–529Google Scholar
  17. 17.
    Hobbs JR (1985) Granularity. In: Proceedings of the ninth international joint conference on artificial intelligence. Morgan Kaufmann, Los Angeles, USA, pp 432–435Google Scholar
  18. 18.
    Huang ZS, van Harmelen F, ten Teije A (2005) Reasoning with inconsistent ontologies. In: Proceedings of the 19th international joint conference on artificial intelligence. Edinburgh, UK, pp 454–459Google Scholar
  19. 19.
    Inuiguchi M, Hirano S, Tsumoto S (2003) Rough set theory and granular computing. Springer, BerlinMATHGoogle Scholar
  20. 20.
    Koychev I (2000) Gradual forgetting for adaptation to concept drift. In: Proceedings of ECAI 2000 workshop current issues in spatio-temporal reasoning. Berlin, Germany, pp 101–106Google Scholar
  21. 21.
    Liu Q, Wang QY (2005) Granular logic with closeness relation λ and its reasoning. In: Lecture notes in computer science, vol 3641, pp 709–717Google Scholar
  22. 22.
    Loftus GR (1985) Evaluating forgetting curves. J Exp Psychol Learn Mem Cogn 11: 397–406CrossRefGoogle Scholar
  23. 23.
    Michalski RS, Winston PH (1986) Variable precision logic. Artif Intell 29(2): 121–146MATHCrossRefGoogle Scholar
  24. 24.
    Miller GA (1956) The magical number seven, plus or minus two: some limits on our capacity for processing information. Psychol Rev 101(2): 343–352CrossRefGoogle Scholar
  25. 25.
    Minsky M (2006) The emotion machine : commonsense thinking, artificial intelligence, and the future of the human mind. Simon & Schuster, New YorkGoogle Scholar
  26. 26.
    Murai T, Resconi G, Nakata M, Sato Y (2003) Granular reasoning using zooming in & out: Propositional reasoning. In: Lecture notes in artificial intelligence, vol 2639, pp 421–424Google Scholar
  27. 27.
    Myers JL, Well AD (2002) Research design and statistical analysis. Routledge, LondonGoogle Scholar
  28. 28.
    Newell A, Rosenbloom PS (1981) Cognitive skills and their acquisition, chapter mechanism of skill acquisition and the law of practice. Lawrence Erlbaum Associates Inc, Hillsdale, pp 1–55Google Scholar
  29. 29.
    Pretschner A, Gauch S (1999) Ontology based personalized search. In: Proceedings of the 11th IEEE international conference on tools with artificial intelligence, pp 391–398Google Scholar
  30. 30.
    Rogers T, Patterson K (2007) Object categorization: reversals and explanations of the basic-level advantage. J Exp Psychol Gen 136(3): 451–469CrossRefGoogle Scholar
  31. 31.
    Tamine-Lechani L, Boughanem M, Daoud M (2009) Evaluation of contextual information retrieval effectiveness: overview of issues and research. Knowl Inf Syst, published online, July 2009Google Scholar
  32. 32.
    Triola MF (2005) Elementary statistics, using the graphing calculator: for the TI-83/84 plus. Pearson EducationGoogle Scholar
  33. 33.
    Vanderveen K, Ramamoorthy C (1997) Anytime reasoning in first-order logic. In: Proceedings of the 9th international conference on tools with artificial intelligence. IEEE Press, Washington, DC, USA, pp 142–148Google Scholar
  34. 34.
    Wickelgren WA (1976) Handbook of learning and cognitive processes: vol 6: linguistic functions in cognitive theory, chapter memory storage dynamics. Lawrence Erlbaum Associates, Hillsdale, pp 321–361Google Scholar
  35. 35.
    Wisniewski EJ, Murphy GL (1989) Superordinate and basic category names in discourse: a textual analysis. Discourse Processing 12: 245–261CrossRefGoogle Scholar
  36. 36.
    Yan L, Liu Q (2008) Researches on granular reasoning based on granular space. In: Proceedings of the 2008 international conference on granular computing, vol 1. IEEE Press, Honululu, pp 706–711Google Scholar
  37. 37.
    Yao YY (2005) Perspectives of granular computing. In: Proceedings of 2005 IEEE international conference on granular computing, vol 1. Beijing, China, pp 85–90Google Scholar
  38. 38.
    Yao YY (2007) The art of granular computing. Lect Notes Artif Intell 4585: 101–112Google Scholar
  39. 39.
    Yao YY (2008) Handbook of granular computing, chapter A unified framework of granular computing. Wiley, New York, pp pp 401–410Google Scholar
  40. 40.
    Zeng Y, Wang Y, Huang ZS, Zhong N (2009) Unifying web-scale search and reasoning from the viewpoint of granularity. Lect Notes Comput Sci 5820: 418–429CrossRefGoogle Scholar
  41. 41.
    Zeng Y, Yao YY, Zhong N (2009) Dblp-sse: a dblp search support engine. In: Proceedings of the 2009 IEEE/WIC/ACM international conference on web intelligence. IEEE Press, pp 626–630Google Scholar
  42. 42.
    Zeng Y, Zhong N (2008) On granular knowledge structures. In: Proceedings of the first international conference on advanced intelligence. Posts & Telecom Press, Beijing, China, pp 28–33Google Scholar
  43. 43.
    Zhang B, Zhang L (1992) Theory and applications of problem solving. 1. Elsevier Science Inc, AmsterdamMATHGoogle Scholar
  44. 44.
    Zhou B, Yao YY (2008) A logic approach to granular computing. Int J Cogn Inf Nat Intell 2(2): 63–79CrossRefGoogle Scholar
  45. 45.
    Zhu JH, Huang XJ, Song DW, Rüger S (2010) Integrating multiple document features in language models for expert finding. Knowl Inf Syst 23(1): 29–54CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2010

Authors and Affiliations

  • Yi Zeng
    • 1
  • Ning Zhong
    • 1
    • 2
  • Yan Wang
    • 1
  • Yulin Qin
    • 1
    • 3
  • Zhisheng Huang
    • 4
  • Haiyan Zhou
    • 1
  • Yiyu Yao
    • 1
    • 5
  • Frank van Harmelen
    • 4
  1. 1.International WIC InstituteBeijing University of TechnologyBeijingChina
  2. 2.Department of Life Science and InformaticsMaebashi Institute of TechnologyMaebashiJapan
  3. 3.Department of PsychologyCarnegie Mellon UniversityPittsburghUSA
  4. 4.Department of Computer ScienceVrije Universiteit AmsterdamAmsterdamThe Netherlands
  5. 5.Department of Computer ScienceUniversity of ReginaReginaCanada

Personalised recommendations