Knowledge and Information Systems

, Volume 27, Issue 1, pp 45–84 | Cite as

Strategies for contextual reasoning with conflicts in ambient intelligence

  • Antonis Bikakis
  • Grigoris Antoniou
  • Panayiotis Hasapis
Regular Paper


Ambient Intelligence environments host various agents that collect, process, change and share the available context information. The imperfect nature of context, the open and dynamic nature of such environments and the special characteristics of ambient agents have introduced new research challenges in the study of Distributed Artificial Intelligence. This paper proposes a solution based on the Multi-Context Systems paradigm, according to which local knowledge of ambient agents is encoded in rule theories (contexts), and information flow between agents is achieved through mapping rules that associate concepts used by different contexts. To resolve potential inconsistencies that may arise from the interaction of contexts through their mappings (global conflicts), we use a preference ordering on the system contexts, which may express the confidence that an agent has in the knowledge imported by other agents. On top of this model, we have developed four alternative strategies for global conflicts resolution, which mainly differ in the type and extent of context and preference information that is used to resolve potential conflicts. The four strategies have been respectively implemented in four versions of a distributed algorithm for query evaluation and evaluated in a simulated P2P system.


Distributed reasoning Contextual reasoning Reasoning with preferences Ambient intelligence Multi-context systems 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adjiman P, Chatalic P, Goasdoue F, Rousset M-C, Simon L (2006) Distributed reasoning in a peer-to-peer setting: application to the semantic web. J Artif Intell Res 25: 269–314MATHMathSciNetGoogle Scholar
  2. 2.
    Agostini A, Bettini C, Riboni D (2005) Loosely coupling ontological reasoning with an efficient middleware for context-awareness. In: Proceedings of MobiQuitous 2005, pp 175–182Google Scholar
  3. 3.
    Antoniou G, Billington D, Governatori G, Maher M (2006) Embedding defeasible logic into logic programming. Theory Pract Log Program 6(6): 703–735CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Antoniou G, Billington D, Governatori G, Maher MJ (2001) Representation results for defeasible logic. ACM Trans Comput Log 2(2): 255–287CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Bernstein PA, Giunchiglia F, Kementsietsidis A, Mylopoulos J, Serafini L, Zaihrayeu I (2002) Data management for peer-to-peer computing: a vision. In: WebDB, pp 89–94Google Scholar
  6. 6.
    Bikakis A, Patkos T, Antoniou G, Plexousakis D (2008) A survey of semantics-based approaches for context reasoning in ambient intelligence. In: Mühlhäuser M, Ferscha A, Aitenbichler E (eds) Constructing ambient intelligence, communications in computer and information science. Springer, Berlin, pp 14–23CrossRefGoogle Scholar
  7. 7.
    Binas A, McIlraith SA (2007) Exploiting preferences over information sources to efficiently resolve inconsistencies in peer-to-peer query answering. In: AAAI 2007 workshop on preference handling for artificial intelligenceGoogle Scholar
  8. 8.
    Brewka G, Roelofsen F, Serafini L (2007) Contextual default reasoning. In: IJCAI, pp 268–273Google Scholar
  9. 9.
    Buvac S, Mason IA (1993) Propositional logic of context. In: AAAI, pp 412–419Google Scholar
  10. 10.
    Calvanese D, De Giacomo G, Lembo D, Lenzerini M, Rosati R (2005) Inconsistency tolerance in P2P data integration: an epistemic logic approach. In: DBPL-05, 3774 of LNCS, SV, pp 90–105Google Scholar
  11. 11.
    Calvanese D, De Giacomo G, Lenzerini M, Rosati R (2004) Logical foundations of peer-to-peer data integration. ACM, New york, pp 241–251Google Scholar
  12. 12.
    Casali A, Godo L, Sierra C (2008) A logical framework to represent and reason about graded preferences and intentions. In: KR, pp 27–37Google Scholar
  13. 13.
    Chatalic P, Nguyen GH, Rousset M-C (2006) Reasoning with inconsistencies in propositional peer-to-peer inference systems. In: ECAI, pp 352–356Google Scholar
  14. 14.
    Chen H, Finin T, Joshi A (2003) Semantic web in a pervasive context-aware architecture. Artif Intell Mob Syst 2003, 33–40Google Scholar
  15. 15.
    Cristani M, Burato E (2009) Approximate solutions of moral dilemmas in multiple agent system. Knowl Inf Syst 18(2): 157–181CrossRefGoogle Scholar
  16. 16.
    Dastani M, Governatori G, Rotolo A, Song I, van der Torre L (2007) Contextual deliberation of cognitive agents in defeasible logic. In: AAMAS, p 148Google Scholar
  17. 17.
    Forstadius J, Lassila O, Seppanen T (2005) RDF-based model for context-aware reasoning in rich service environment. In: PerCom 2005 workshops, pp 15–19Google Scholar
  18. 18.
    Franconi E, Kuper GM, Lopatenko A, Serafini L (2003) A robust logical and computational characterisation of peer-to-peer database systems. In: DBISP2P, pp 64–76Google Scholar
  19. 19.
    Gandon FL, Sadeh NM (2004) Semantic web technologies to reconcile privacy and context awareness. J Web Semant 1: 241–260Google Scholar
  20. 20.
    Ghidini C, Giunchiglia F (2001) Local models semantics, or contextual reasoning = locality + compatibility. Artif Intell 127(2): 221–259CrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    Giunchiglia F, Serafini L (1994) Multilanguage hierarchical logics, or: how we can do without modal logics. Artif Intell 65(1): 29–70CrossRefMATHMathSciNetGoogle Scholar
  22. 22.
    Gong L (2001) JXTA: a network programming environment. IEEE Internet Comput 5(3): 88–95CrossRefGoogle Scholar
  23. 23.
    Governatori G, Maher MJ, Antoniou G, Billington D (2004) Argumentation semantics for defeasible logic. J Log Comput 14(5): 675–702CrossRefMATHMathSciNetGoogle Scholar
  24. 24.
    Gu T, Pung HK, Zhang DQ (2004) A middleware for building context-aware mobile services. In: Proceedings of the IEEE vehicular technology conference (VTC 2004). Milan, ItalyGoogle Scholar
  25. 25.
    Halevy AY, Ives ZG, Suciu D, Tatarinov I (2003) Schema mediation in peer data management Systems. In: ICDE, p 505Google Scholar
  26. 26.
    Hatala M, Wakkary R, Kalantari L (2005) Ontologies and rules in support of real-time ubiquitous application. J Web Semant, Special Issue on “Rules and ontologies for Semantic Web” 3(1) 5–22 (2004)Google Scholar
  27. 27.
    Henricksen K, Indulska J (2004) Modelling and using imperfect context information. In: Proceedings of PERCOMW ’04’. IEEE Computer Society, Washington, DC, pp. 33–37Google Scholar
  28. 28.
    Khushraj D, Lassila O, Finin T (2004) sTuples: semantic tuple spaces. In: First annual international conference on mobile and Ubiquitous systems: networking and services (MobiQuitousć604), pp 267–277Google Scholar
  29. 29.
    Kofod-Petersen A, Mikalsen M (2005) Representing and reasoning about context in a mobile environment. Revue d’Intelligence Artificielle 19(3): 479–498CrossRefGoogle Scholar
  30. 30.
    Korpipaa P, Mantyjarvi J, Kela J, Keranen H, Malm E-J (2003) Managing context information in mobile devices. IEEE Pervasive Comput 02(3): 42–51CrossRefGoogle Scholar
  31. 31.
    Krummenacher R, Kopecký J, Strang T (2005) Sharing context information in semantic spaces. In: OTM workshops, pp 229–232Google Scholar
  32. 32.
    Maher MJ (2002) A model-theoretic semantics for defeasible Logic. In: Paraconsistent computational logic, pp 67–80Google Scholar
  33. 33.
    McCarthy J (1987) Generality in artificial intelligence. Commun ACM 30(12): 1030–1035CrossRefMATHMathSciNetGoogle Scholar
  34. 34.
    McCarthy J, Buvač S (1998) Formalizing context expanded notes. In: Aliseda A, Glabbeek R, Westerståhl D (eds) Computing natural language. CSLI Publications, Stanford California, pp 13–50Google Scholar
  35. 35.
    Nguyen NT, Katarzyniak R (2009) Actions and social interactions in multi-agent systems. Knowl Inf Syst 18(2): 133–136CrossRefGoogle Scholar
  36. 36.
    Nute D (1997) Defeasible deontic logic. Kluwer, Chapter Apparent Obligation, pp 288–315Google Scholar
  37. 37.
    Nute D (2001) Defeasible logic. In: Proceedings of the 14th international conference on applications of Prolog, pp 87–114Google Scholar
  38. 38.
    Patkos T, Bikakis A, Antoniou G, Plexousakis D, Papadopouli M (2007) A semantics-based framework for context-aware services: lessons learned and challenges. In: Proceedings of 4th international conference on Ubiquitous intelligence and computing (UIC-2007), Vol. 4611 of LNCS, Springer, pp 839–848Google Scholar
  39. 39.
    Ranganathan A, Campbell RH (2003) An infrastructure for context-awareness based on first order logic. Pers Ubiquitous Comput 7(6): 353–364CrossRefGoogle Scholar
  40. 40.
    Resconi G, Kovalerchuk B (2009) Agents’ model of uncertainty. Knowl Inf Syst 18(2): 213–229CrossRefGoogle Scholar
  41. 41.
    Roelofsen F, Serafini L (2005) Minimal and absent information in contexts. In: IJCAI, pp 558–563Google Scholar
  42. 42.
    Sabater J, Sierra C, Parsons S, Jennings NR (2002) Engineering executable agents using multi-context systems. J Log Comput 12(3): 413–442CrossRefMATHMathSciNetGoogle Scholar
  43. 43.
    Serafini L, Bouquet P (2004) Comparing formal theories of context in AI. Artif Intell 155(1–2): 41–67CrossRefMATHMathSciNetGoogle Scholar
  44. 44.
    Sinner A, Kleemann T, von Hessling A (2004) Semantic user profiles and their applications in a mobile environment. In: Artificial intelligence in mobile systems 2004Google Scholar
  45. 45.
    Toninelli A, Montanari R, Kagal L, Lassila O (2006) A semantic context-aware access control framework for secure collaborations in pervasive computing environments. In: Proceedings of 5th international semantic web conference, pp 5–9Google Scholar
  46. 46.
    Turhan A-Y, Springer T, Berger M (2006) Pushing doors for modeling contexts with OWL DL a case study. In: ‘PERCOMW ’06: Proceedings of the 4th annual IEEE international conference on Pervasive Computing and Communications Workshops’, IEEE Computer Society, Washington, DCGoogle Scholar
  47. 47.
    Wang XH, Dong JS, Chin CY, Hettiarachchi SR, Zhang D (2004) Semantic space: an infrastructure for smart spaces. IEEE Pervasive Comput 3(3): 32–39CrossRefGoogle Scholar
  48. 48.
    Wang XH, Zhang DQ, Gu T, Pung HK (2004) Ontology based context modeling and reasoning using OWL. In: ‘PERCOMW ’04: proceedings of the second IEEE Annual conference on pervasive computing and communications workshops’, IEEE Computer Society, Washington, DC, p 18Google Scholar

Copyright information

© Springer-Verlag London Limited 2010

Authors and Affiliations

  • Antonis Bikakis
    • 1
  • Grigoris Antoniou
    • 1
  • Panayiotis Hasapis
    • 2
  1. 1.Institute of Computer Science, FO.R.T.H.CreteGreece
  2. 2.Department of InformaticsAthens University of Economics and BusinessAthensGreece

Personalised recommendations