Advertisement

Knowledge and Information Systems

, Volume 26, Issue 2, pp 175–193 | Cite as

Keyword search in relational databases

  • Jaehui Park
  • Sang-goo Lee
Survey Paper

Abstract

This paper surveys research on enabling keyword search in relational databases. We present fundamental characteristics and discuss research dimensions, including data representation, ranking, efficient processing, query representation, and result presentation. Various approaches for developing the search system are described and compared within a common framework. We discuss the evolution of new research strategies to resolve the issues associated with probabilistic models, efficient top-k query processing, and schema analysis in relational databases.

Keywords

Keyword search Relational database Information retrieval Integration Ranking model Top-k query Processing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agrawal S, Chaudhuri S, Das G (2002) DBXplorer: a system for keyword-based search over relational databases. In: Proceedings of the 18th international conference on data engineering, pp 5–17, February 26–March 01, 2002, San Jose, California, USAGoogle Scholar
  2. 2.
    Balmin A, Hristidis V, Papakonstantinou Y (2004) ObjectRank: authority-based keyword search in databases. In: Proceedings of the 30th international conference on very large data bases, pp 564–575, August 31–September 03, 2004, Toronto, CanadaGoogle Scholar
  3. 3.
    Brin S, Page L (1998) The anatomy of a large-scale hypertextual web search engine. In: Proceedings of the 7th international conference on world wide web, pp 107–117, April 01–07, 1998, Brisbane, AustraliaGoogle Scholar
  4. 4.
    Calado P, da Silva AS, Vieira RC, Laender AHF, Ribeiro-Neto BA (2002) Searching web databases by structuring keyword-based queries. In: Proceedings of the 11th international conference on information and knowledge management, pp 26–33, November 04–09, McLean, Virginia, USAGoogle Scholar
  5. 5.
    Chaudhuri S, Das G, Hristidis V, Weikum G (2003) Automated ranking of database query results. In: First Biennial Conference on Innovative Data Systems Research, pp 888–899, January 5–8, 2003, Asilomar, California, USAGoogle Scholar
  6. 6.
    Chaudhuri S, Das G, Hristidis V, Weikum G (2004) Probabilistic ranking of database query results. In: Proceedings of the 30th international conference on very large data bases, pp 888–899, August 31–September 03, 2004, Toronto, CanadaGoogle Scholar
  7. 7.
    Dar S, Entin G, Geva S, Palmon E (1998) DTL’s dataspot: database exploration using plain language. In: Proceedings of the 24th international conference on very large data bases, pp 645–649, August 24–27, 1998, San Francisco, California, USAGoogle Scholar
  8. 8.
    Ding B, Yu JX, Wang S, Qin L, Zhang X, Lin X (2007) Finding Top-k min-cost connected trees in databases. In: Proceedings of the IEEE 23th international conference on data engineering, pp 836–845, April 17–20, 2007, Istanbul, TurkeyGoogle Scholar
  9. 9.
    Ghanem TM, Aref WG (2004) Database deepen the web. Computer 37(1): 116–117CrossRefGoogle Scholar
  10. 10.
    Goldman R, Shivakumar N, Venkatasubramanian S, Garcia-Molina H (1998) Proximity search in databases. In: Proceedings of the 24th international conference on very large data bases, pp 26–37, August 24–27, 1998, San Francisco, California, USAGoogle Scholar
  11. 11.
    He H, Wang H, Yang J, Yu PS (2007) BLINKS: ranked keyword searches on graphs. In: Proceedings of the 2007 ACM SIGMOD international conference on management of data, pp 305–316, June 11–14, 2007, Beijing, ChinaGoogle Scholar
  12. 12.
    Hristidis V, Koudas N, Papakonstantinou Y (2001) PREFER: a system for the efficient execution of multi-parametric ranked queries. SIGMOD Record 30(2): 259–270CrossRefGoogle Scholar
  13. 13.
    Hristidis V, Papakonstantinou Y (2002) DISCOVER: keyword search in relational databases. In: Proceedings of the 28th international conference on very large data bases, pp 670–681, August 20–23, 2002, Hong Kong, ChinaGoogle Scholar
  14. 14.
    Hristidis V, Gravano L, Papakonstantinou Y (2003) Efficient IR-style keyword search over relational databases. In: Proceedings of the 29th international conference on very large data bases, pp 850–861, September 9–12, 2003, Berlin, GermanyGoogle Scholar
  15. 15.
    Hristidis V, Hwang H, Papakonstantinou Y (2008) Authority-based keyword search in databases. ACM Trans Database Syst 33(1): 1–40CrossRefGoogle Scholar
  16. 16.
    Hulgeri A, Nakhe C (2002) Keyword searching and browsing in databases using BANKS. In: Proceedings of the 18th international conference on data engineering, pp 431–441, February 26–March 01, 2002, San Jose, California, USAGoogle Scholar
  17. 17.
    Hwang FK, Richards DS, Winter P (1992) The Steiner tree problem, annals of discrete mathematics, vol 53. Elsevier/North-Holland, AmsterdamGoogle Scholar
  18. 18.
    Ilyas IF, Aref WG, Elmagarmid AK (2003) Supporting top-K join queries in relational databases. In: Proceedings of the 29th international conference on very large data bases, pp 754–765, September 9–12, 2003, Berlin, GermanyGoogle Scholar
  19. 19.
    Kacholia V, Pandit S, Chakrabarti S, Sudarshan S, Desai R, Karambelkar H (2005) Bidirectional expansion for keyword search on graph databases. In: Proceedings of the 31th international conference on very large data bases, pp 505–516, August 30–September 02, 2005, Trondheim, NorwayGoogle Scholar
  20. 20.
    Korth HF, Silberschatz A (1986) Database system concepts. McGraw-Hill, Inc., New YorkzbMATHGoogle Scholar
  21. 21.
    Li W-S, Candan KS, Vu Q, Agrawal D (2001) Retrieving and organizing web pages by information unit. In: Proceedings of the 10th international conference on world wide web, pp 230–244, May 01–05, 2001, Hong Kong, ChinaGoogle Scholar
  22. 22.
    Li G, Ooi BC, Feng J, Wang J, Zhou L (2008) EASE: an effective 3-in-1 keyword search method for unstructured, semi-structured and structured data. In: Proceedings of the 2008 ACM SIGMOD international conference on management of data, pp 903–914, June 9–12, 2008, Vancouver, CanadaGoogle Scholar
  23. 23.
    Liu F, Yu C, Meng W, Chowdhury A (2006) Effective keyword search in relational databases. In: Proceedings of the 2006 ACM SIGMOD international conference on management of data, pp 563–574, June 27–29, 2006, Chicago, Illinois, USAGoogle Scholar
  24. 24.
    Luo Y, Lin X, Wang W, Zhou X (2007) SPARK: Top-k keyword query in relational databases. In: Proceedings of the 2007 ACM SIGMOD international conference on management of data, pp 115–126, June 11–14, 2007, Beijing, ChinaGoogle Scholar
  25. 25.
    Manning CD, Raghavan P, Schutze H (2008) Introduction to information retrieval. Cambridge University Press, CambridgezbMATHGoogle Scholar
  26. 26.
    Mesquita F, da Silva AS, de Moura ES, Calado P, Laender AHF (2007) LABRADOR: efficiently publishing relational databases on the web by using keyword-based query interfaces. Inform Process Manage 43(4): 983–1004CrossRefGoogle Scholar
  27. 27.
    Natsev A, Chang Y-C, Smith JR, Li C-S, Vitter JS (2001) Supporting incremental join queries on ranked inputs. In: Proceedings of the 27th international conference on very large data bases, pp 281–290, September 11–14, 2001, Roma, ItalyGoogle Scholar
  28. 28.
    Tong H, Faloutsos C, Pan J-Y (2008) Random walk with restart: fast solutions and applications. Knowl Inform Syst 14(3): 327–346zbMATHCrossRefGoogle Scholar
  29. 29.
    Wan X (2008) Beyond topical similarity: a structural similarity measure for retrieving highly similar documents. Knowl Inform Syst 15(1): 55–73CrossRefGoogle Scholar
  30. 30.
    Wang S, Zhang K-L (2005) Searching databases with keywords. J Comput Sci Technol 20(1): 55–62CrossRefGoogle Scholar
  31. 31.
    Wang S, Peng Z, Zhang J, Qin L, Wang S, Yu JX, Ding B (2006) NUITS: a novel user interface for efficient keyword search over databases. In: Proceedings of the 32th international conference on very large data bases, pp 1143–1146, September 12–15, 2006, Seoul, KoreaGoogle Scholar
  32. 32.
    Wang Z, Wang Q, Wang D-W (2009) Bayesian network based business information retrieval model. Knowl Inform Syst 20(1): 63–79CrossRefGoogle Scholar
  33. 33.
    Zhang J, Peng Z-H, Wang S, Nie H-J (2007) CLASCN: candidate network selection for efficient top-k keyword queries over databases. J Comput Sci Technol 22(2): 197–207CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2010

Authors and Affiliations

  1. 1.School of Computer Science and EngineeringSeoul National UniversitySeoulRepublic of Korea
  2. 2.School of Computer Science and EngineeringSeoul National UniversitySeoulRepublic of Korea

Personalised recommendations