Knowledge and Information Systems

, Volume 24, Issue 1, pp 149–170 | Cite as

Interpreting PET scans by structured patient data: a data mining case study in dementia research

  • Jana Schmidt
  • Andreas Hapfelmeier
  • Marianne Mueller
  • Robert Perneczky
  • Alexander Kurz
  • Alexander Drzezga
  • Stefan KramerEmail author
Regular Paper


One of the goals of medical research in the area of dementia is to correlate images of the brain with clinical tests. Our approach is to start with the images and explain the differences and commonalities in terms of the other variables. First, we cluster Positron emission tomography (PET) scans of patients to form groups sharing similar features in brain metabolism. To the best of our knowledge, it is the first time ever that clustering is applied to whole PET scans. Second, we explain the clusters by relating them to non-image variables. To do so, we employ RSD, an algorithm for relational subgroup discovery, with the cluster membership of patients as target variable. Our results enable interesting interpretations of differences in brain metabolism in terms of demographic and clinical variables. The approach was implemented and tested on an exceptionally large data collection of patients with different types of dementia. It comprises 10 GB of image data from 454 PET scans, and 42 variables from psychological and demographical data organized in 11 relations of a relational database. We believe that explaining medical images in terms of other variables (patient records, demographic information, etc.) is a challenging new and rewarding area for data mining research.


PET Clustering Subgroup discovery Alzheimer’s disease Dementia Brain Neuro imaging CERAD CDR 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bär H, Sauer J (2006) Diagnostik und Therapie häufiger Demenzen. In: Ärzteblatt Thüringen. Jena, Germany, pp 413–414Google Scholar
  2. 2.
    Böhm C, Kailing K, Kriegel H-P, Kröger P (2004) Density connected clustering with local subspace preferences. In: ICDM ’04: Proceedings of the fourth IEEE international conference on data mining (ICDM’04). IEEE Computer Society, Washington, DC, pp 27–34Google Scholar
  3. 3.
    Chandler MJ, Lacritz LH, Hynan LS, Barnard HD, Allen G, Deschner M, Weiner MF, Cullum CM (2005) A total score for the CERAD neuropsychological battery. Neurology 65(1): 102–106CrossRefGoogle Scholar
  4. 4.
    Chen JY, Shen CY, Sivachenko AY (2006) Mining Alzheimer disease relevant proteins from integrated protein interactome data. Pac Symp Biocomput 11: 367–378CrossRefGoogle Scholar
  5. 5.
    Clark P, Niblett T (1989) The CN2 induction algorithm. Mach Learn 3(4): 261–283Google Scholar
  6. 6.
    Corani G, Edgar C, Marshall I, Wesnes K, Zaffalon M (2006) Classification of dementia types from cognitive profiles data. In: Proceedings of the 10th european conference on principle and practice of knowledge discovery in databases (PKDD 2006). Springer, Heidelberg, pp 470–477Google Scholar
  7. 7.
    Fung G, Stoeckel J (2006) SVM feature selection for classification of SPECT images of Alzheimer’s disease using spatial information. Knowl Inf Syst 11(2): 243–258CrossRefGoogle Scholar
  8. 8.
    Kalbfleisch J (1985) Probability and statistical inference: statistical inference, vol 2. Springer, HeidelbergGoogle Scholar
  9. 9.
    Kaufman L, Rousseeuw PJ (1990) Finding groups in data: an introduction to cluster analysis. Wiley, New YorkGoogle Scholar
  10. 10.
    Lavrač N, Železný F, Flach PA (2003) RSD: Relational subgroup discovery through first-order feature construction. In: Matwin S, Sammut C (eds) Proceedings of the 12th international conference on inductive logic programming. Lecture Notes in Artificial Intelligence, vol 2583. Springer, Heidelberg, pp 149–165Google Scholar
  11. 11.
    Mani S, Shankle W, Pazzani MJ, Smyth P, Dick MB (1997) Differential diagnosis of dementia: a knowledge discovery and data mining (KDD) approach. American Medical Informatics Association (AMIA) Annual Fall SymposiumGoogle Scholar
  12. 12.
    Megalooikonomou V, Ford J, Shen L, Makedon F, Saykin A (2000) Data mining in brain imaging. Stat Methods Med Res 9: 359–394zbMATHCrossRefGoogle Scholar
  13. 13.
    Ordonez C, Ezquerra N, Santana CA (2006) Constraining and summarizing association rules in medical data. Knowl Inf Syst 9(3): 259–289CrossRefGoogle Scholar
  14. 14.
    Perneczky R, Drzezga A, Diehl-Schmid J, Schmid G, Wohlschlager A, Kars S, Grimmer T, Wagenpfeil S, Monsch A, Kurz A (2006) Schooling mediates brain reserve in Alzheimer’s disease: findings of FDG PET. J Neurol Neurosurg Psychiatry 77: 1060–1063CrossRefGoogle Scholar
  15. 15.
    Sese J, Kurokawa Y, Monden M, Kato K, Morishita S (2004) Constrained clusters of gene expression profiles with pathological features. Bioinformatics 20(17): 3137–3145CrossRefGoogle Scholar
  16. 16.
    Železný F (2003) RSD—a system for relational subgroup discovery through first-order feature construction—user‘s manual. 2003. v1.0Google Scholar
  17. 17.
    Železný F, Lavrač N (2006) Propositionalization-based relational subgroup discovery with RSD. Mach Learn 62(1-2): 33–63CrossRefGoogle Scholar
  18. 18.
    Walker PR, Smith B, Liu QY, Famili F, Valdes J, Liu Z, Lach B (2004) Data mining of gene expression changes in alzheimer brain. Artif Intel Med 31(2): 137–154CrossRefGoogle Scholar
  19. 19.
    World Health Organization (2005) ICD-10: International statistical classification of diseases and related health problems (Tenth Revision), 2nd edn. World Health Organization, Geneva, SwitzerlandGoogle Scholar
  20. 20.
    Wu X, Kumar V, Ross Quinlan J, Ghosh J, Yang Q, Motoda H, McLachlan GJ, Ng A, Liu B, Yu PS, Zhou Z-H, Steinbach M, Hand DJ, Steinberg D (2008) Top 10 algorithms in data mining. Knowl Inf Syst 14(1): 1–37CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2009

Authors and Affiliations

  • Jana Schmidt
    • 1
  • Andreas Hapfelmeier
    • 1
  • Marianne Mueller
    • 1
  • Robert Perneczky
    • 2
  • Alexander Kurz
    • 2
  • Alexander Drzezga
    • 3
  • Stefan Kramer
    • 1
    Email author
  1. 1.Institut für Informatik/I12TU MünchenGarching b. MünchenGermany
  2. 2.Klinik u. Poliklinik für Psychiatrie, u. PsychotherapieTU MünchenMünchenGermany
  3. 3.Nuklearmedizinische KlinikTU MünchenMünchenGermany

Personalised recommendations