Knowledge and Information Systems

, Volume 17, Issue 3, pp 265–286 | Cite as

A hybrid aggregation and compression technique for road network databases

  • Ali Khoshgozaran
  • Ali Khodaei
  • Mehdi Sharifzadeh
  • Cyrus Shahabi
Regular Paper

Abstract

Vector data and in particular road networks are being queried, hosted and processed in many application domains such as in mobile computing. Many client systems such as PDAs would prefer to receive the query results in unrasterized format without introducing an overhead on overall system performance and result size. While several general vector data compression schemes have been studied by different communities, we propose a novel approach in vector data compression which is easily integrated within a geospatial query processing system. It uses line aggregation to reduce the number of relevant tuples and Huffman compression to achieve a multi-resolution compressed representation of a road network database. Our experiments performed on an end-to-end prototype verify that our approach exhibits fast query processing on both client and server sides as well as high compression ratio.

Keywords

Multi-resolution compression Vector data Aggregation Road networks Spatial databases GIS 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ai T, Li Z, Liu Y (2003) Progressive transmission of vector data based on changes accumulation model. SDH, Leicester, Springer, Berlin, pp 85–96Google Scholar
  2. 2.
    Akimov A, Kolesnikov A, Fränti P (2004) Reference line approach for vector data compression. In: ICIP, pp 1891–1894Google Scholar
  3. 3.
    Bertolotto M, Egenhofer MJ (2001) Progressive transmission of vector map data over the world wide web. Geoinformatica 5(4):345–373 URL http://citeseer.ist.psu.edu/bertolotto01progressive.html Google Scholar
  4. 4.
    Bertolotto M, Zhou M (2007) Efficient line simplification for web-mapping. International journal of web engineering and technology special issue on web and wireless. GIS 3(2): 139–156Google Scholar
  5. 5.
    Buttenfield B (2002) Transmitting vector geospatial data across the internet. In: GIScience ’02: proceedings of the 2nd international conference on geographic information science, London, UK, Springer, Heidelberg, pp 51–64. ISBN 3-540-44253-7Google Scholar
  6. 6.
    Cai Y, Stumpf R, Wynne T, Tomlinson M, Chung DSH, Boutonnier X, Ihmig M, Franco R, Bauernfeind N (2007) Visual transformation for interactive spatiotemporal data mining. Knowl Inf Syst 13(2):119–142 ISSN 0219-1377. doi:10.1007/s10115-007-0075-5 Google Scholar
  7. 7.
    Douglas DH, Peucker TK (1973) Algorithms for the reduction of the number of points required to represent a digitized line or its caricature. Can Cartogr 10(2): 112–122Google Scholar
  8. 8.
    Han Q, Bertolotto M (2004) A multi-level data structure for vector maps. In: GIS ’04: proceedings of the 12th annual ACM international workshop on geographic information systems, New York, NY, USA, ACM Press, pp 214–221 ISBN 1-58113-979-9. doi:10.1145/1032222.1032254
  9. 9.
    Huffman DA (1952) A method for the construction of minimum redundancy codes. Proc Inst Radio Eng 40(9): 1098–1101Google Scholar
  10. 10.
    Khoshgozaran A, Khodaei A, Sharifzadeh M, Shahabi C (2006) A multi-resolution compression scheme for efficient window queries over road network databases. In: ICDM workshops. IEEE Computer Society, pp 355–360. ISBN 0-7695-2702-7.Google Scholar
  11. 11.
    Paiva AC, da Silva ED, Leite FL Jr, de Souza Baptista C (2004) A multiresolution approach for internet gis applications. In: DEXA Workshops, IEEE Computer Society, pp 809–813 ISBN 0-7695-2195-9Google Scholar
  12. 12.
    Persson J (2004) Streaming of compressed multi-resolution geographic vector data. Geoinformatics, SwedenGoogle Scholar
  13. 13.
    Puppo E, Dettori G (1995) Towards a formal model for multi-resolution spatial maps. In: Egenhofer MJ, Herring JR (eds) SSD, volume 951 of Lecture Notes in Computer Science, Springer, Heidelberg, pp 152–169. ISBN 3-540-60159-7Google Scholar
  14. 14.
    Saalfeld A (1999) Topologically consistent line simplification with the douglas-peucker algorithm. Cartogr Geogr Inf Sci 26(1): 7–17CrossRefGoogle Scholar
  15. 15.
    Shahabi C, Kolahdouzan MR, Safar M (2004) Alternative strategies for performing spatial joins on web sources. Knowl Inf Syst 6(3):290–314. ISSN 0219-1377. doi:10.1007/s10115-003-0104-y
  16. 16.
    Shekhar S, Huang Y, Djugash J, Zhou C (2002) Vector map compression: a clustering approach. In: Voisard A, Chen SC (eds) ACM-GIS, ACM, pp 74–80 ISBN 1-58113-591-2Google Scholar
  17. 17.
    Silberschatz A, Korth HF, Sudarshan S (1998) Database system concepts, 5th edn. McGraw Hill, New york. ISBN 0-07-295886-3Google Scholar
  18. 18.
    Wu ST, Márquez MRG (2003) A non-self-intersection douglas-peucker algorithm. In: SIBGRAPI, IEEE Computer Society, pp 60–66. ISBN 0-7695-2032-4Google Scholar
  19. 19.
    Zhou M, Bertolotto M (2005) Efficiently generating multiple representations for web mapping. In: Li K-J, Vangenot C (eds) W2GIS, volume 3833 of Lecture Notes in Computer Science, Springer, Heidelberg, pp 54–65. ISBN 3-540-30848-2Google Scholar
  20. 20.
    Zhu Q, Yao X, Huang D, Zhang Y (2002) An efficient data management approach for large cybercity gis. ISPRSGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2008

Authors and Affiliations

  • Ali Khoshgozaran
    • 1
  • Ali Khodaei
    • 1
  • Mehdi Sharifzadeh
    • 1
  • Cyrus Shahabi
    • 1
  1. 1.Department of Computer Science, Information Laboratory (InfoLab)University of Southern CaliforniaLos AngelesUSA

Personalised recommendations