Knowledge and Information Systems

, Volume 13, Issue 2, pp 119–142 | Cite as

Visual transformation for interactive spatiotemporal data mining

  • Yang Cai
  • Richard Stumpf
  • Timothy Wynne
  • Michelle Tomlinson
  • Daniel Sai Ho Chung
  • Xavier Boutonnier
  • Matthias Ihmig
  • Rafael Franco
  • Nathaniel Bauernfeind
Regular Paper

Abstract

Analytical models intend to reveal inner structure, dynamics, or relationship of things. However, they are not necessarily intuitive to humans. Conventional scientific visualization methods are intuitive, but limited by depth, dimension, and resolution. The purpose of this study is to bridge the gap with transformation algorithms for mapping the data from an abstract space to an intuitive one, which include shape correlation, periodicity, multiphysics, and spatial Bayesian. We tested this approach with the oceanographic case study. We found that the interactive visualization increases robustness in object tracking and positive detection accuracy in object prediction. We also found that the interactive method enables the user to process the image data at less than 1 min per image versus 30 min per image manually. As a result, our test system can handle at least 10 times more data sets than traditional manual analyses. The results also suggest that minimal human interactions with appropriate computational transformations or cues may significantly increase the overall productivity.

Keywords

Vision Visualization Interaction Data Mining 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aarts E, Marzano S (2003) The new everyday – views on ambient intelligent. In: Ambient intelligent for everyday life, Lecture notes in artificial intelligence, vol 3864, 2006 edn. Springer, Berlin Heidelberg, New YorkGoogle Scholar
  2. 2.
    Bandini S, Pavesi G (2002) Controlled generation of two-dimensional patterns based on stochastic cellular automata. Future Gener Comput Syst 18:973–981MATHCrossRefGoogle Scholar
  3. 3.
    Cai (2005) Ambient intelligence for scientific discovery, vol 3345. Springer, Berlin Heidelberg New YorkGoogle Scholar
  4. 4.
    Cai, et al (2005) Ambient diagnostics, ambient intelligence for scientific discovery, vol. 3345. Springer, Berlin Heidelberg New YorkGoogle Scholar
  5. 5.
    Cai Y, Abscal J (2006) Ambient intelligent for everyday life, Lecture notes in artificial intelligence, vol 3864. Springer, Berlin Heidelberg New YorkGoogle Scholar
  6. 6.
    Cowell AJ, Havre S, May R, Sanfilippo A (2005) Scientific discovery within data streams, ambient intelligence for scientific discovery, vol 3345. Springer, Berlin Heidelberg New YorkGoogle Scholar
  7. 7.
    Devaney, et al (2005) Science at the speed of thought, ambient intelligence for scientific discovery, vol 3345. Springer, Berlin Heidelberg New YorkGoogle Scholar
  8. 8.
    Essam JW (1980) Percolation theory. Rep Prog Phys 43:833CrossRefMathSciNetGoogle Scholar
  9. 9.
    Gardner M (1980) Mathematical games. Sci Am 243:18–28Google Scholar
  10. 10.
    Hardy, et al (1976) Molecular dynamics of a classical lattice gas: transport properties and time correlation functions. Phys Rev A 13(5):1949–1961CrossRefGoogle Scholar
  11. 11.
    Hubona GS, Shirah GW (2005) Spatial cues in 3D visualization, ambient intelligence for scientific discovery, vol 3345. Springer, Berlin Heidelberg New YorkGoogle Scholar
  12. 12.
    Fu X, Cai Y (2006) Cellular automata for spatiotemporal data mining, In: LNCS 3394, SpringerGoogle Scholar
  13. 13.
    Langley P (1977) BACON: a production system that discovers empirical laws. In: Proceedings of IJCAI, Cambridge, MA, USAGoogle Scholar
  14. 14.
    Lewin K (1935) A dynamic theory of personality, McGraw-HillGoogle Scholar
  15. 15.
    Leyton M (1992) Symmetry, causality, mind. MIT Press, CambridgeGoogle Scholar
  16. 16.
    Linsay R, Buchanan B, Feigenbaum E (1993) Dendral: a case study of the first expert system for scientific hypothesis formation. Artif Intell 61(2):209–261CrossRefGoogle Scholar
  17. 17.
    Pryke A, Beale R (2005) Interactive comprehensible data mining, ambient intelligence for scientific discovery, vol 3345. Springer, Berlin Heidelberg New YorkGoogle Scholar
  18. 18.
    Sethares WA, Staley TW (1999) Periodicity transforms. IEEE Trans Signal Process 47(11):2953–2962MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Sethares WA, Staley TW (2001) Meter and periodicity in musical performance. J New Music Res 22(5):1–11Google Scholar
  20. 20.
    Sonka, et al (1998) Image processing. Anal Mach VisGoogle Scholar
  21. 21.
    Stauffer D (1994) Introduction to percolation theory. Taylor and Francis, LondonGoogle Scholar
  22. 22.
    Toffoli T, Margolus N (1987) Cellular automata machines: a new environment for modeling. MIT Press, CambridgeGoogle Scholar
  23. 23.
    Tomlinson, et al (2004) Evaluation of the use of Seawifs imagery for detecting Karenia Brevis harmful algal blooms in the Eastern Gulf of Mexico. Remote Sens Environ 91:293–303Google Scholar
  24. 24.
    Vichniac GY (1984) Simulating physics with cellular automata. Physica D, Nonlinear Phenomena 10:96–116CrossRefMathSciNetGoogle Scholar
  25. 25.
    von Neumann J (1966) The theory of self-reproducing automata. University of Illinois Press, UrbanaGoogle Scholar
  26. 26.
    Wolfram S (1983a) Statistical mechanics of cellular automata. Rev Mod Phys 55:601CrossRefMathSciNetGoogle Scholar
  27. 27.
    Wolfram, S. (1983b) Statistical mechanics of cellular automata. Rev Mod Phys 55:601–644CrossRefMathSciNetGoogle Scholar
  28. 28.
    Wolfram S (1984a) Cellular automata as models for complexity. Nature 311:419CrossRefGoogle Scholar
  29. 29.
    Wolfram S (1984b) Universality and complexity in cellular automata. Physica D, Nonlinear Phenomena 10:1–35CrossRefMathSciNetGoogle Scholar
  30. 30.
    Wolfram S (1985) Twenty problems in the theory of cellular automata. Phys Scr T9:170–183CrossRefMathSciNetGoogle Scholar
  31. 31.
    Wolfram S (2002) A new kind of science. Wolfram Media, Champaign, IL, pp~60–70 and 886Google Scholar
  32. 32.
    Yeh A, Li X (2002) Urban simulation using neural networks and cellular automata for land use planning. In: Symposium on geospatial theory, processing and applications, OttawaGoogle Scholar
  33. 33.
    Zhou S, Chellappa R, Moghaddam B (2005) Tracking and recognition using apprearance-adaptive models in particle filters. IEEE Trans Image Process 13(11):1491–1506CrossRefGoogle Scholar
  34. 34.
    Zudilova EV, Sloot PM (2005) Multi-modal interaction in biomedicine, ambient intelligence for scientific discovery, vol 3345. Springer, Berlin Heidelberg New YorkGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2007

Authors and Affiliations

  • Yang Cai
    • 1
  • Richard Stumpf
    • 2
  • Timothy Wynne
    • 2
  • Michelle Tomlinson
    • 2
  • Daniel Sai Ho Chung
    • 1
  • Xavier Boutonnier
    • 1
  • Matthias Ihmig
    • 1
  • Rafael Franco
    • 1
  • Nathaniel Bauernfeind
    • 1
  1. 1.Ambient Intelligent LaboratoryCarnegie Mellon UniversityPittsburghUSA
  2. 2.NOAASilver SpringUSA

Personalised recommendations