Knowledge and Information Systems

, Volume 15, Issue 1, pp 1–30 | Cite as

TeMAS–a multi-agent system for temporally rich domains

Regular Paper

Abstract

In this paper, we present the model and simulator of a multi-agent system (MAS) for temporally rich domains. The theoretical foundations of the model include a knowledge representation scheme based on an original modification of Petri nets, called Petri nets with time tokens (PNTTs), as well as temporal reasoning based on the extension of Allen's temporal logic. The proposed MAS, called TeMAS, has a hierarchical structure, consisting of different levels, where each level contains clusters of agents. A paradigm of hierarchically organized blackboards is used for the communication among agents, clusters, as well as levels. We describe an object-oriented implementation of a program simulator of TeMAS and give an example of the use of the simulator for interpretation of events in a dynamic scene.

Keywords

Multi-agent system Petri nets Knowledge representation Temporal reasoning Simulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    1. Albers M, Jonker CM, Karami M, Treur J (2004) Agent models anddifferent user ontologies for an electronic market place. KnowlInf Syst 6(1):1–41CrossRefGoogle Scholar
  2. 2.
    2. Allen JF (1983) Maintaining knowledge about temporal intervals.Commun ACM 26(11):832–843CrossRefMATHGoogle Scholar
  3. 3.
    3. Augusto JC, Simari GR (2001) Temporal defeasible reasoning. KnowlInf Syst 3(3):287–318CrossRefMATHGoogle Scholar
  4. 4.
    4. Balan GC, Cioffi-Revilla C, Luke S, Panait L, Paus S (2003) MASON:a Java multi-agent simulation library. In: Proceedings of agent2003 conference on challenges in social simulation, Chicago, IL3–4 October 2003Google Scholar
  5. 5.
    5. Barber F, Botti F, Onaindia E, Crespo A (1994) Temporal reasoningin REAKT (an environment for real-time knowledge-based systems).AiCommunications 7(3):175–202Google Scholar
  6. 6.
    6. Barrow HG, Tenenbaum JM (1981) Computational vision. Proc IEEE69(5):72–579Google Scholar
  7. 7.
    7. Booch G, Rumbaugh J, Jacobson I (1999) The unified modelinglanguage user guide. Addison-Wesley, ReadingGoogle Scholar
  8. 8.
    8. Bruns G, Mossinger P, Polani D, Schmitt R, Spalt R, Uthman T,Weber S (2003) A simulation environment for continous virtualmulti-agent systems, user manual.http://www.informatik.uni-mainz.de/~polani/XRaptor/XRaptor_7_3_8a/XRaptor_User_Manual-7.3.8a.pdf
  9. 9.
    9. Bulitko V, Wilkins DC (2003) Qualitative simulation of temporalconcurrent processes using time interval Petri nets. Artif Intell144:95–124CrossRefMathSciNetMATHGoogle Scholar
  10. 10.
    10. Cardoso J (1999) Time fuzzy Petri nets. Fuzziness in Petri nets.Springer-Verlag, Berlin, pp 115–145Google Scholar
  11. 11.
    11. Collier N (2001) RePast: an extensible framework for agentsimulation.http://www.econ.iastate.edu/tesfatsi/RepastTutorial.Collier.pdf
  12. 12.
    12. Dean TL, McDermott DV (1987) Temporal data base management. ArtifIntell 32:1–55Google Scholar
  13. 13.
    13. Decther R, Meiri I, Pearl J (1991) Temporal constraint network.Artif Intell 49:61–69CrossRefGoogle Scholar
  14. 14.
    14. Dubois D, Prade H (1989) Processing fuzzy temporal knowledge. IEEETrans Syst Man Cybernet 19(4):729–744CrossRefMathSciNetGoogle Scholar
  15. 15.
    15. Ferber J (1999) Multi-agent systems: an introduction todistributed artificial intelligence. Addison-Wesley, ReadingGoogle Scholar
  16. 16.
    16. He M, Leung H (2002) Agents in e-commerce: state of the art. KnowlInf Syst 4(3):257–282CrossRefGoogle Scholar
  17. 17.
    17. Helleboogh A, Holvoet T, Weyns D (2004) Time managementadaptability in multi-agent systems. In: Proceedings of the fourthsymposium on adaptive agents and multi-agent systems at the AISB′04 convention, Leeds, UK, 29–30 March 2004, pp 20–29Google Scholar
  18. 18.
    18. Jensen K (1987) Coloured Petri nets. In: Lecture notes in computerscience, vol 254. Springer-Verlag, Berlin, pp 248–299Google Scholar
  19. 19.
    19. Jensen K (1997) Coloured Petri nets. Springer-Verlag, BerlinMATHGoogle Scholar
  20. 20.
    20. Jong W-T, Shiau Y-S, Horng Y-J, Chen H-H, Chen S-M (1999) Temporalknowledge representation and reasoning techniques using time Petrinets. IEEE Trans Syst Man Cybernet B 29(4):541–545CrossRefGoogle Scholar
  21. 21.
    21. Jou SH, Kao SJ (2002) Agent-based infrastructure and anapplication to internet information gathering. Knowl Inf Syst4(4):80–95CrossRefMATHGoogle Scholar
  22. 22.
    22. Kahn K, Gorry GA (1977) Mechanizing temporal knowledge. ArtifIntell 9:87–108Google Scholar
  23. 23.
    23. Klein J (2002) BREVE: a 3D environment for the simulation ofdecentralized systems and artificial life. In: Proceedings ofartificial life VIII, the 8th international conference on thesimulation and synthesis of living systems, Wales, Sydney,Australia. The MIT Press, Cambridge, MA, pp 329–334Google Scholar
  24. 24.
    24. Klugl F, Puppe F (1998) The multi-agent simulation environmentSeSAm. Paper presented at workshop simulation in knowledge-basedsystems, Paderborn, Germany.http://ki.informatik.uni-wuerzburg.de/~kluegl/pubs/1998/kluegl\_puppe\_SiWis98.pdf
  25. 25.
    25. Le Page C, Bousquet F (2000) CORMAS: a multiagent simulationtoolkit to model natural and social dynamics at multiple scales.Paper presented at workshop the “ecology of scales”, Wageningen. http://cormas.cirad.fr/pdf/cormasw.pdf
  26. 26.
    26. Lison M (2002) Deformation parameters in dynamic eventrecognition. In: Proceedings of the third international workshopon robot motion and control, RoMoCo ′02, Bukowy, Poland. pp 325–330Google Scholar
  27. 27.
    27. Liu J, Tang YY (1999) Adaptive image segmentation with distributedbehaviour-based agents. IEEE Trans PAMI 21(6):544–551Google Scholar
  28. 28.
    28. Logan B, Theodoropoulos G (2001) The distributed simulation ofmultiagent systems. Proc IEEE 89(2):174–185CrossRefGoogle Scholar
  29. 29.
    29. Matarić MJ (2000) Getting humanoids to move and imitate. IEEEIntell Syst 15(4):18–24CrossRefGoogle Scholar
  30. 30.
    30. Matarić MJ (2001) Learning in behavior-based multi-robotsystems: policies, models and other agents. J Cogn Syst Res2(1):81–93CrossRefGoogle Scholar
  31. 31.
    31. McCharty J, Hayes PJ (1969) Some philosophical problems from thestandpoint of artificial intelligence. In: Meltzer B, Michie D(eds) Machine intelligence, vol 4. Edinburgh University Press,Edinburgh, pp 463–502Google Scholar
  32. 32.
    32. Meimei G, Xiaoguang H, Zhiming W (2000) Linear logic as a tool forpresentation and temporal reasoning of time Petri nets. In:Proceedings of the American control conference, Chicago, pp3177–3181Google Scholar
  33. 33.
    33. Merlin P (1976) A methodology for the design and implementation ofcommunication protocols. IEEE Trans Commun 24(6):614–621CrossRefMathSciNetGoogle Scholar
  34. 34.
    34. Mesarovic MD, Macko D, Takahara Y (1970) Theory of multi-levelhierarchical systems. Academic Press, New YorkGoogle Scholar
  35. 35.
    35. Minar N, Burkhart R, Langton C, Askenazi M (1996) The swarmsimulation system: a toolkit for building multi-agent simulations.Santa Fe Institute Working Paper 96-06-042Google Scholar
  36. 36.
    36. Murata T, Suzuki T, Shatz SM (1999) Fuzzy-timing high-level petrinets (FTHNs) for time-critical systems. In: Cardoso J, Camargo H(eds) Fuzziness in Petri nets. Springer-Verlag, Heidelberg, pp88–114Google Scholar
  37. 37.
    37. Palmer SE (1999) Vision science. The MIT Press, Cambridge, MAGoogle Scholar
  38. 38.
    38. Pelavin R, Allen JF (1986) A formal logic of plans in temporallyrich domains. Proc IEEE 74(10):1364–1382CrossRefGoogle Scholar
  39. 39.
    39. Peterson JL (1981) Petri net theory and modeling of systems.Prentice-Hall, Englewood CliffsGoogle Scholar
  40. 40.
    40. Reisig W (1992) A primer in petri net design. Springer-Verlag,BerlinMATHGoogle Scholar
  41. 41.
    41. Remagnino P, Tan T, Baker K (1998) Multi-agent vision surveillanceof dynamic scenes. Image Vis Comput 16(8):529–532CrossRefGoogle Scholar
  42. 42.
    42. Resnick M (1997) Turtles, termites and traffic jams: explorationsin massively parallel microworlds. The MIT Press, Cambridge, MAGoogle Scholar
  43. 43.
    43. Ribarić S (2005) Temporal knowledge representation andreasoning model for temporally rich domains. In: Lecture notes incomputer science: knowledge-based intelligent information andengineering systems, vol 3682. Springer-Verlag, Berlin HeidelbergNew York, pp 430–436Google Scholar
  44. 44.
    44. Ribarić S, Dalbelo-Bašić B, Tomac D (2000)Object-oriented implementation of a model for fuzzy temporalreasoning. Proc Inf Process Manage Uncertain Knowl Based Syst2:1247–1253Google Scholar
  45. 45.
    45. Ribarić S, Hrkać T (2003) Object-oriented simulator ofmulti-agent system for temporally rich domains. In: Proceedings ofthe 25th international conference on information technologyinterfaces, ITI 2003, Cavtat, Croatia, pp 397–402Google Scholar
  46. 46.
    46. Rus D (1998) Self-reconfiguring robots. IEEE Intell Syst13(4):2–4CrossRefGoogle Scholar
  47. 47.
    47. Russell SJ, Norvig P (1995) Artificial intelligence, a modernapproach. Prentice-Hall, Upper Saddle RiverGoogle Scholar
  48. 48.
    48. Subrahmanian VS, Bonatti P, Dix J, Eiter T, Kraus S, Ozcan F, RossR (2000) Heterogeneous agent systems. MIT Press, Cambridge, MAGoogle Scholar
  49. 49.
    49. Suzuki I, Lu H (1989) Temporal petri nets and their application tomodeling and analysis of a handshake daisy chain arbiter. IEEETrans Comput 38(5):696–704CrossRefGoogle Scholar
  50. 50.
    50. Stavroulakis S, Callaghan V, Spacek L (2000) A multi-agentapproach to machine vision. Paper presented at EXPO 2000: shapingthe future, Hanover, Germany.http://www.shaping-the-future.de/pdf\_www/051\_paper.pdf
  51. 51.
    51. Symeonidis AL, Valtos E, Seroglou S, Mitkas PA (2005) Biotope: anintegrated framework for simulating distributed multiagentcomputational systems. IEEE Trans Syst Man Cybern A Syst Hum35(3):420–432CrossRefGoogle Scholar
  52. 52.
    52. Vincent R, Horling B, Lesser V (2001) An agent infrastructure tobuild and evaluate multi-agent systems: the Java agent frameworkand multi-agent system simulator. In: Lecture notes in artificialintelligence: infrastructure for agents, multi-agent systems andscalable multi-agent systems, vol 1887. Springer-Verlag, BerlinHeidelberg New York, pp 102–127Google Scholar
  53. 53.
    53. Wang Y, Yuan B (2002) Fast method for face location and trackingby distributed behaviour based agents. IEEE Proc Vis Image SignalProcess 149(3):173–178CrossRefGoogle Scholar
  54. 54.
    54. Weiss G (1999) Multi-agent systems: a modern approach todistributed artificial intelligence. MIT Press, CambridgeGoogle Scholar
  55. 55.
    55. Weyns D, Holvoet T (2002) A Colored petri net for a multi-agentapplication. In: Proceedings of modeling objects, components andagents, Arhaus, Denmark, pp 121–140Google Scholar
  56. 56.
    56. Weyns D, Holvoet T (2004) A colored petri net for regionalsynchronization in situated multi-agent systems. In: Proceedingsof the first international workshop on petri nets and coordination(PNC 04), Bologna, Italy, pp 65–85Google Scholar
  57. 57.
    57. Wooldridge M (2002) An introduction to multiagent systems. Wiley,ChichesterGoogle Scholar
  58. 58.
    58. Yong T, Na T, XiaoPing Y, ZhiSheng F, Wei X (2003) An unifiedmodel of temporal knowledge and temporal data. In: Proceedings ofthe 8th international conference on computer-supported cooperativework in design, Xiamen, China, pp 711–713Google Scholar
  59. 59.
    59. Zaidi AK, Rizvi KH, Hussain SS (2003) On spatial modeling ofdiscrete event systems using point-interval logic. In: Proceedingsof the second international conference on machine learning andcybernetics, Xian, pp 1699–1704Google Scholar

Copyright information

© Springer-Verlag London Limited 2006

Authors and Affiliations

  1. 1.Faculty of Electrical Engineering and ComputingUniversity of ZagrebZagrebCroatia

Personalised recommendations