Acta Mathematica Sinica

, Volume 18, Issue 2, pp 301–310

Poisson Morphisms and Reduced Affine Poisson Group Actions

ORIGINAL ARTICLES
  • 36 Downloads

Abstract

We establish the concept of a quotient affine Poisson group, and study the reduced Poisson action of the quotient of an affine Poisson group G on the quotient of an affine Poisson-G-variety V. The Poisson morphisms (including equivariant cases) between Poisson affine varieties are also discussed.

Keywords

Poisson affine varieties Affine Poisson groups Poisson morphisms 

MR (2000) Subject Classification

58H05 17B66 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chari V., Pressley A., A Guide to Quantum Group, Cambridge: Cambridge University Press, 1994Google Scholar
  2. 2.
    Kazhdan D., Kostant B., Sternberg S., Hamiltonian group actions and dynamical systems of Calogero type, Comm. Pure Appl. Math., 1978, 31:481–507MATHMathSciNetGoogle Scholar
  3. 3.
    Arms J. M., Gotay M. J., Jennings G., Geometric and algebraic reduction for singular momentum mappings, Adv. in Math., 1990, 80:43–103CrossRefMathSciNetGoogle Scholar
  4. 4.
    Semenov-Tian-Shansky M. A., Dressing transformations and Poisson group actions, Publ. Res. Inst. Sci. Kyoto Univ., 1985, 21:1237–1260MathSciNetGoogle Scholar
  5. 5.
    Vanhaecke P., Integrable Hamiltonian systems associated to families of curves and their bi-Hamiltonian structure, in Integrable systems and foliations (eds. C. Albert, R. Brouzet, J. P. Dufour,) Pro. in Math., Berlin:Birkhäuser, 1997, 145:187–212MathSciNetGoogle Scholar
  6. 6.
    Lu J. H., Weinstein A., Poisson Lie groups, dressing transformations, and the Bruhat decomposition, J. Diff. Geom., 1990, 31:501–507MATHGoogle Scholar
  7. 7.
    Liu Z. J., Yang Q. L., Reduced Poisson actions, Sience in China, 2000, 43:1026–1034MATHGoogle Scholar
  8. 8.
    Borel A., Linear Algebraic Groups, 2nd ed., Grad. texts Math., Berlin-Heidlberg-New York:Springer- Verlag, 1991, 126 Google Scholar
  9. 9.
    Humphreys J., Linear Algebraic Groups, Grad. texts Math., Berlin - Heidlberg-New York:Springer-Verlag, 1975, 21 Google Scholar
  10. 10.
    Vaisman I., Lectures on the geometry of Poisson manifolds, Pro. in Math., Berlin:Birkhäuser, 1994, 118 Google Scholar
  11. 11.
    Grosshans F. D., Algebraic Homogeneous Spaces and Invariant theory. Lect. Notes Math., Berlin-Heidlberg -New York:Springer-Verlag, 1997, 1673 Google Scholar
  12. 12.
    Rosenlicht M., On quotient varieties and the affine embedding of certain homogeneous spaces, Trans. Amer. Math. Soc., 1961, 101:211–223MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Yang Q. L., Poisson Actions and Related Topics, PhD thesis, Peking University, 2000Google Scholar
  14. 14.
    Hochschild G. P., Basic Theory of Algebraic Groups and Lie algebra, Grad. texts Math., Berlin-Heidlberg- New York:Springer-Verlag, 1981, 75 Google Scholar
  15. 15.
    Kempf G. R., Algebraic Varieties, Lond. Math. Soc. Lect. Note Ser., Cambridge:Cambridge University Press, 1993, 172 Google Scholar
  16. 16.
    Mumford D., Fogarty J., Geometric Invariant Theory, 2nd ed. Ergebnisse der Mathematik and ihrer Grenzgebiete, Berlin-Heidlberg-New York:Springer-Verlag, 1982, 34 Google Scholar
  17. 17.
    Springer T. A., Invariant theory, Lect. Notes Math., Berlin-Heidlberg-New York:Springer-Verlag, 1977, 585 Google Scholar
  18. 18.
    Weyl H., Theory of invariants. Outline by Alfred H. Clifford. The Institute for Advanced Study, Princeton, Fall term:Princeton University Press, 1936Google Scholar
  19. 19.
    Yang Q. L., Dirac Strutures, Chin. J. Conte. Math., 2000, 21(4):341–350Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  1. 1.Institue of MathematicsAcademy of Mathematics and System Sciences, Chinese Academy of SciencesBeijingP. R. China

Personalised recommendations