On a Critical Fourth Order PDE with Navier Boundary Condition
Article
First Online:
- 18 Downloads
Abstract
We consider a fourth order nonlinear PDE involving the critical Sobolev exponent on a bounded domain of ℝn, n ≥ 5 with Navier condition on the boundary. We study the lack of compactness of the problem and we provide an existence theorem through a new index formula.
Keywords
Fourth order PDE critical nonlinearity variational problem critical points at infinityMR(2010) Subject Classification
35J60 35J65Preview
Unable to display preview. Download preview PDF.
References
- [1]Abdelhedi, W., Chtioui, H.: On the prescribed Paneitz curvature problem on the standard spheres. Advanced Nonlinear Studies, 6, 511–528 (2006)MathSciNetCrossRefGoogle Scholar
- [2]Abdelhedi, W., Chtioui, H., Hajaiej, H.: Q-curvature type problem on bounded domains of ℝn. Asymptotic Analysis, 109(3–4), 143–170 (2018)MathSciNetCrossRefGoogle Scholar
- [3]Al Ghamdi, M. Chtioui, H., Rigane, A.: Existence of conformal metrics with prescribed Q-curvature. Abstract and Applied Analysis, 2013, Article ID 568245, 11 pages (2013)Google Scholar
- [4]Bahri, A.: Critical Point at Infinity in Some Variational Problems. Pitman Res. Notes Math, Ser., 182, Longman Sci. Tech., Harlow, 1989Google Scholar
- [5]Bahri, A., Coron, J. M.: On a nonlinear elliptic equation involving the critical Sobolev exponent: The effect of topology of the domain. Comm. Pure Appl. Math., 41, 255–294 (1988)MathSciNetzbMATHGoogle Scholar
- [6]Bahri, A., Rabinowits, P.: Periodic orbits of hamiltonian systems of three body type. Ann. Inst. H. Poincaré Anal. Non Linaire, 8, 561–649 (1991)CrossRefGoogle Scholar
- [7]Bensouf, A., Chtioui, H.: Conformal metrics with prescribed Q-curvature on S n. Calculus of Variations and PDE, 41, 455–481 (2011)CrossRefGoogle Scholar
- [8]Branson, T. P.: Differential operators canonically associated to a conformal structure. Mathematica Scandinavica, 57, 293–345 (1985)MathSciNetCrossRefGoogle Scholar
- [9]Chang, S. A., Yang, P. C.: On a fourth order curvature invariant. Spectral problems in Geometry and Arithmetic, Contemporary Math., 237, 9–28 (1999)MathSciNetCrossRefGoogle Scholar
- [10]Chang, S. A., Gursky, M. J., Yang, P. C.: Regularity of a fourth order non linear PDE with critical exponent. Amer. J. Math., 121, 215–257 (1999)MathSciNetCrossRefGoogle Scholar
- [11]Chtioui, H., Rigane, A.: On the prescribed Q-curvature problem on S n. Journal of Functional Analysis, 261, 2999–3043 (2011)MathSciNetCrossRefGoogle Scholar
- [12]Chtioui, H., Bouchech, Z.: On a bi-harmonic equation involving critical exponent: Existence and multiplicity results. Acta Mathematica Scientia Ser. B (Engl. Ed.), 31(4), 1213–1244 (2011)MathSciNetCrossRefGoogle Scholar
- [13]Chtioui, H., El mehdi, K.: On a Paneitz type equation in six dimensional domains. Differential and Integral Equations, 17, 681–696 (2004)MathSciNetzbMATHGoogle Scholar
- [14]Djadli, Z., Hebey, E., Ledoux, M.: Paneitz-type operators and applications. Duke Math. J., 104, 129–169 (2000)MathSciNetCrossRefGoogle Scholar
- [15]Djadli, Z., Malchiodi, A., Ould Ahmedou, M.: Prescribing a fourth order conformal invariant on the standard sphere, Part I: a perturbation result. Commun. Contemp. Math., 4, 375–408 (2002)MathSciNetCrossRefGoogle Scholar
- [16]Djadli, Z., Malchiodi, A., Ould Ahmedou, M.: Prescribing a fourth order conformal invariant on the standard sphere, Part II: blow up analysis and applications. Annali della Scuola Normale Sup. di Pisacl. Sci. (5), 1(2), 387–434 (2002)zbMATHGoogle Scholar
- [17]Ebobisse, F., Ahmedou, M. O.: On a nonlinear fourth-order elliptic equation involving the critical Sobolev exponent. Nonlinear Anal. TMA, 52, 1535–1552 (2003)MathSciNetCrossRefGoogle Scholar
- [18]Lin, C. S.: A classification of solution of a conformally invariant fourth order equation in Rn. Commentari Mathematici Helvetici, 73, 206–231 (1998)CrossRefGoogle Scholar
- [19]Paneitz, S.: A quartic conformally covariant differential operator for arbitrary pseudo-Riemannian manifolds, SIGMA, 4, paper 036, 3pp. 2008Google Scholar
- [20]Sharaf, K., Hajaiej, H.: A Morse inequality for a fourth order elliptic equation on a bounded domain. Electron. J. Qual. Theory Differ. Equ., 35, 1–20 (2019)MathSciNetzbMATHGoogle Scholar
- [21]Struwe, M.: A global compactness result for elliptic boundary value problem involving limiting nonlinearities. Math. Z., 187, 511–517 (1984)MathSciNetCrossRefGoogle Scholar
- [22]Van Der Vorst, R. C. A. M.: Variational identities and applications to differential systems. Arch. Rational Mech. Anal., 116, 375–398 (1991)MathSciNetCrossRefGoogle Scholar
Copyright information
© Springer-Verlag GmbH Germany & The Editorial Office of AMS 2019