Acta Mathematica Sinica, English Series

, Volume 35, Issue 12, pp 1891–1905 | Cite as

Non-Gaussian Random Bi-matrix Models for Bi-free Central Limit Distributions with Positive Definite Covariance Matrices

  • Ming Chu GaoEmail author


In this paper, we construct random two-faced families of matrices with non-Gaussian entries to approximate a bi-free central limit distribution with a positive definite covariance matrix. We prove that, under modest conditions weaker than independence, a family of random two-faced families of matrices with non-Gaussian entries is asymptotically bi-free from a two-faced family of constant diagonal matrices.


Bi-free central limit distributions non-Gaussian random matrices asymptotic bi-freeness 

MR(2010) Subject Classification



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Anderson, G., Guionnet, A., Zeitouni, O.: An Introduction to Ramdom Matrices, Cambridge Stud. Adv. Math., 118, Cambridge Univ. Press, New York, 2009Google Scholar
  2. [2]
    Charlesworth, I., Nelson, B., Skoufranis, P.: Combinatorics of Bi-free Probaility with Amalgamation. Comm. Math. Phys., 338(2), 801–847 (2015)MathSciNetCrossRefGoogle Scholar
  3. [3]
    Charlesworth, I., Nelson, B., Skoufranis, P.: On two-faced families of non-commutative random variables. Canad. J. Math., 26(6), 1290–1325 (2015)MathSciNetCrossRefGoogle Scholar
  4. [4]
    Dykema, K.: On certain free product factors via an extended matrix model. J. Funct. Anal., 112, 31–60 (1993)MathSciNetCrossRefGoogle Scholar
  5. [5]
    Gao, M.: Two-faced families of non-commutative random variables having bi-free infinitely divisible distributions. Internat. J. Math., 27(4), 1650037, 20 pp. (2016)MathSciNetCrossRefGoogle Scholar
  6. [6]
    Gu, Y., Huang, H., Mingo, J.: An analogue of the Levy-Hincin formula for bi-free infintely divisible distributions. Indiana Univ. Math. J., 65(5), 1795–1831 (2016)MathSciNetCrossRefGoogle Scholar
  7. [7]
    Hiai, F., Pets, D.: The Semicircle Law, Free Random Variables, and Entropy, Math. Surveys Monogr, Vol. 77, AMS, 2000Google Scholar
  8. [8]
    Nica, A., Speicher, R.: Lectures on Combinatorics for Free Probability. London Math. Soc. Lecture Note Ser., Vol. 335, Cambridge Univ. Press (2006)Google Scholar
  9. [9]
    Skoufranis, P.: Some bi-matrix models for bi-free limit distributions. Indiana Univ. Math. J., 66(5), 1755–1795 (2017)MathSciNetCrossRefGoogle Scholar
  10. [10]
    Skoufranis, P.: Independence and partial R-transforms in bi-free probability. Ann. Inst. H. Poincaré Probab. Statist., 52(3), 1437–1473 (2016)MathSciNetCrossRefGoogle Scholar
  11. [11]
    Voiculescu, D.: Free probability of pairs of two faces I. Comm. Math. Phys., 332, 955–980 (2014)MathSciNetCrossRefGoogle Scholar
  12. [12]
    Voiculescu, D.: Limit laws for random matrices and free products. Invent. Math., 104, 201–220 (1991)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany & The Editorial Office of AMS 2019

Authors and Affiliations

  1. 1.School of Mathematics and Information ScienceBaoji University of Arts and SciencesBaojiP. R. China
  2. 2.Department of MathematicsLouisiana CollegePinevilleUSA

Personalised recommendations