Advertisement

Acta Mathematica Sinica, English Series

, Volume 35, Issue 12, pp 1917–1936 | Cite as

Complete f-moment Convergence for Widely Orthant Dependent Random Variables and Its Application in Nonparametric Models

  • Chao Lu
  • Zhuang Chen
  • Xue Jun WangEmail author
Article
  • 18 Downloads

Abstract

In this paper, we study the complete f-moment convergence for widely orthant dependent (WOD, for short) random variables. A general result on complete f-moment convergence for arrays of rowwise WOD random variables is obtained. As applications, we present some new results on complete f-moment convergence for WOD random variables. We also give an application to nonparametric regression models based onWOD errors by using the complete convergence that we established. Finally, the choice of the fixed design points and the weight functions for the nearest neighbor estimator are proposed, and a numerical simulation is provided to verify the validity of the theoretical result.

Key words

Widely orthant dependent random variables complete f-moment convergence complete convergence complete consistency 

MR(2010) Subject Classification

60F15 60G20 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Adler, A., Rosalsky, A.: Some general strong laws for weighted sums of stochastically dominated random variables. Stochastics Analysis and Applications, 5, 1–16 (1987)MathSciNetCrossRefGoogle Scholar
  2. [2]
    Asadian, N., Fakoor, V., Bozorgnia, A.: Rosenthal’s type inequalities for negatively orthant dependent random variables. Journal of the Iranian Statistical Society, 5, 69–75 (2006)zbMATHGoogle Scholar
  3. [3]
    Chen, W., Wang, Y. B., Cheng, D. Y.: An inequality of widely dependent random variables and its applications. Lithuanian Mathematical Journal, 56, 16–31 (2016)MathSciNetCrossRefGoogle Scholar
  4. [4]
    Gao, M. M., Wang, K. Y., Chen, L. M.: Precise large deviations for widely orthant dependent random variables with different distributions. Journal of Inequalities and Applications, Volume 2018, Article ID 21, 18 pages (2018)Google Scholar
  5. [5]
    Hu, T. C., Rosalsky, A., Wang, K. L.: Complete convergence theorems for extended negatively dependent random variables. Sankhya A, 77, 1–29 (2015)MathSciNetCrossRefGoogle Scholar
  6. [6]
    Hu, T. Z.: Negatively superadditive dependence of random variables with applications. Chinese Journal of Applied Probability and Statisties, 16, 133–144 (2000)MathSciNetzbMATHGoogle Scholar
  7. [7]
    Joag-Dev, K., Proschan, F.: Negative association of random variables with applications. The Annals of Statistics, 11, 286–295 (1983)MathSciNetCrossRefGoogle Scholar
  8. [8]
    Lehmann, E. L.: Some concepts of dependence. The Annals of Mathematical Statistics, 37, 1137–1153 (1966)MathSciNetCrossRefGoogle Scholar
  9. [9]
    Liu, L.: Precise large deviations for dependent random moment variables with heavy tails. Statistics and Probability Letters, 79, 1290–1298 (2009)MathSciNetCrossRefGoogle Scholar
  10. [10]
    Liu, L.: Necessary and sufficient conditions for moderate deviations of dependent random variables with heavy tails. Science China Mathematics, 53, 1421–1434 (2010)MathSciNetCrossRefGoogle Scholar
  11. [11]
    Qiu, D. H., Chen, P. Y.: Complete and complete moment convergence for weighted sums of widely orthant dependent random variables. Acta Math. Sin., Engl. Ser., 30, 1539–1548 (2014)MathSciNetCrossRefGoogle Scholar
  12. [12]
    Qiu, D. H., Chen, P. Y.: Convergence for weighted sums of widely orthant dependent random variables. Communications in Statistics-Theory and Methods, 45, 4445–4453 (2016)MathSciNetCrossRefGoogle Scholar
  13. [13]
    Roussas, G. G., Tran, L. T., Ioannides, D. A.: Fixed design regression for time series: asymptotic. Journal of Multivariate Analysis, 40, 262–291 (1992)MathSciNetCrossRefGoogle Scholar
  14. [14]
    Shen, A. T.: Bernstein-type inequality for widely dependent sequence and its application to nonparametric regression models. Abstract and Applied Analysis, Volume 2013, Article ID 862602, 9 pages (2013)Google Scholar
  15. [15]
    Shen, A. T., Zhang, Y., Volodin, A.: Applications of the Rosenthal-type inequality for negatively superad-ditive dependent random variables. Metrika, 78, 295–311 (2015)MathSciNetCrossRefGoogle Scholar
  16. [16]
    Shen, A. T.: Complete convergence for weighted sums of END random variables and its application to nonparametric regression models. Journal of Nonparametric Statistics, 28, 702–715 (2016)MathSciNetCrossRefGoogle Scholar
  17. [17]
    Shen, A. T., Yao, M., Wang, W. J., et al.: Exponential probability inequalities for WNOD random variables and their applications. RACSAM, 110, 251–268 (2016)MathSciNetCrossRefGoogle Scholar
  18. [18]
    Stone, C. J.: Consistent nonparametric regression regression. The Annals of Statistics, 5, 595–620 (1977)MathSciNetCrossRefGoogle Scholar
  19. [19]
    Tran, L. T., Roussas, G. G., Yakowitz, S., et al.: Fixed design regression for linear time serries. The Annals of Statistics, 24, 975–991 (1996)MathSciNetCrossRefGoogle Scholar
  20. [20]
    Wang, K. Y., Yang, Y., Lin, J. G.: Precise large deviations for widely orthant dependent random variables with dominatedly varying tails. Frontiers of Mathematics in China, 7, 919–932 (2012)MathSciNetCrossRefGoogle Scholar
  21. [21]
    Wang, K. Y., Wang, Y. B., Gao, Q. W.: Uniform asymptotics for the finite-time ruin probability of a new dependent risk model with a constant interest rate. Methodology and Computing in Applied Probability, 15, 109–124 (2013)MathSciNetCrossRefGoogle Scholar
  22. [22]
    Wang, X. J., Si, Z. Y.: Complete consistency of the estimator of nonparametric regression model under ND sequence. Statistical Papers, 56(3), 585–596 (2015)MathSciNetCrossRefGoogle Scholar
  23. [23]
    Wang, X. J., Xu, C., Hu, T. C., et al.: On complete convergence for widely orthant-dependent random variables and its applications in nonparametric regression models. TEST, 23, 607–629 (2014)MathSciNetCrossRefGoogle Scholar
  24. [24]
    Wang, X. J., Wu, Y., Rosalsky, A.: Complete convergence for arrays of rowwise widely orthant dependent random variables and its applications. Stochastics: An International Journal of Probability and Stochastic Processes, 89, 1228–1252 (2017)MathSciNetCrossRefGoogle Scholar
  25. [25]
    Wang, Y. B., Cheng, D. Y.: Basic renewal theorems for random walks with widely dependent increments. Journal of Mathematical Analysis and Applications, 384, 597–606 (2011)MathSciNetCrossRefGoogle Scholar
  26. [26]
    Wu, Y., Wang, X. J., Hu, T. C., et al.: Complete f-moment convergence for extended negatively dependent random variables. RACSAM, 113, 333–351 (2019)MathSciNetCrossRefGoogle Scholar
  27. [27]
    Wu, Y., Wang, X. J., Rosalsky, A.: Complete moment convergence for arrays of rowwise widely orthant dependent dependent random variables. Acta Math. Sin., Engl. Ser., 34, 1531–1548 (2018)MathSciNetCrossRefGoogle Scholar
  28. [28]
    Wu, Y. F., Manuel, O. C., Volodin, A.: Complete convergence and complete moment convergence for arrays of rowwise END random variables. Glasnik Matematicki, 49, 447–466 (2014)MathSciNetCrossRefGoogle Scholar
  29. [29]
    Yang, W. Z., Liu, T. T., Wang, X. J., et al.: On the Bahadur representation of sample quantiles for widely orthant dependent sequence. Filomat, 28(7), 1333–1343 (2014)MathSciNetCrossRefGoogle Scholar
  30. [30]
    Yang, W. Z., Xu, H. Y., Chen, L., et al.: Complete consistency of estimators for regression models based on extended negatively dependent. Statistical Papers, 59, 449–465 (2018)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany & The Editorial Office of AMS 2019

Authors and Affiliations

  1. 1.School of Mathematical SciencesAnhui UniversityHefeiP. R. China

Personalised recommendations