Acta Mathematica Sinica, English Series

, Volume 35, Issue 2, pp 245–256 | Cite as

Reconstruction of Splines from Nonuniform Samples

  • Qing Yue ZhangEmail author
  • Wen Chang Sun


In this paper, we study the reconstruction of spline functions from their nonuniform samples. We investigate the existence and uniqueness of the solution of the following problem: for given data {(xn, yn): n ∈ ℤ}, find a cardinal spline f(x), of a given degree, satisfying yn = f(xn), n ∈ ℤ. Several necessary and/or sufficient conditions for the existence and uniqueness of the solution of the problem are derived. Finally, an example and some applications are presented to illustrate the main results.


Cardinal spline interpolation nonuniform sampling sampling set 

MR(2010) Subject Classification

94A20 94A12 42C15 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Aldroubi, A., Gröchenig, K.: Beurling–Landau-type theorems for non-uniform sampling in shift invariant spline spaces. J. Fourier Anal. Appl., 6, 93–103 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    Aldroubi, A., Gröhenig, K.: Nonuniform sampling and reconstruction in shift-invariant spaces. SIAM Rev., 43, 585–620 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    Aldroubi, A., Davis, J., Krishtal, I.: Exact reconstruction of signals in evolutionary systems via spatiotemporal trade-off. J. Fourier Anal. Appl., 21, 11–31 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    Chen, Y., Cheng, C., Sun, Q., et al.: Phase retrieval of real-valued signals in a shift-invariant space. ArXiv:1603.01592Google Scholar
  5. [5]
    Daubechies, I.: Ten Lectures on Wavelets, SIAM, Philadelphia, 1992CrossRefzbMATHGoogle Scholar
  6. [6]
    Folland, B.: Real Analysis, John Wiley, New York, 1984zbMATHGoogle Scholar
  7. [7]
    Gröchenig, K.: Localization of frames, Banach frames, and the invertibility of the frame operator. J. Fourier Anal. Appl., 10, 105–132 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    Huo, H., Sun, W.: Average sampling theorem. Sci. China Ser. A, 45, 1403–1422 (2015)Google Scholar
  9. [9]
    Jia, R., Micchelli, C.: Using the refinement equations for the construction of pre-wavelets, ii. powers of two, in Curves and Surfaces (P. J. Laurent, A. Le Méhauté, and L. L. Schumaker, eds.), Academic Press, Boston, MA, 209–246 (1991)Google Scholar
  10. [10]
    Jia, R.: Shift-invariant spaces on the real line. Proc. Amer. Math. Soc., 125, 785–793 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    Katznelson, Y.: An Introduction to Harmonic Analysis, John Wiley, New York, 1968zbMATHGoogle Scholar
  12. [12]
    Landau, H.: Necessary density conditions for sampling and interpolation of certain entire functions. Acta Math., 117, 37–52 (1967)MathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    Subbotin, J. N.: On the relations between finite differences and the corresponding derivatives. Proc. Steklov Inst. Math., 78, 24–42 (1965)Google Scholar
  14. [14]
    Schoenberg, I. J.: Cardinal interpolation and spline functions: II. interpolation of data of power growth. J. Approx. Theory, 6, 404–420 (1972)CrossRefzbMATHGoogle Scholar
  15. [15]
    Schoenberg, I. J.: Cardinal Spline Interpolation, SIAM, Wisconsin, 1973CrossRefzbMATHGoogle Scholar
  16. [16]
    Sun, W., Zhou, X.: On the sampling for wavelet subspaces. J. Fourier Anal. Appl., 5, 347–354 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    Sun, W., Zhou, X.: Average sampling in spline subspaces. Appl. Math. Letters, 15, 233–237 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    Sun, W., Zhou, X.: Reconstruction of functions in spline subspaces from local averages. Proc. Amer. Math. Soc., 131, 2561–2571 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    Sun, W., Zhou, X.: Characterization of local sampling sequences for spline subspaces. Adv. Comput. Math., 30, 153–175 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    Xian, J., Luo, S., Lim, W.: Weighted sampling and signal reconstruction in spline subspaces. Signal Process., 86, 331–340 (2006)CrossRefzbMATHGoogle Scholar
  21. [21]
    Xian, X., Li, S.: Sampling set conditions in weighted multiply generated shift-invariant spaces and their applications. Appl. Comput. Harmon. Anal., 23, 171–180 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    Xian, X., Li, S.: General A-P iterative algorithm in shift-invariant spaces. Acta Math. Sin., Engl. Ser., 25, 545–552 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    Zhang, Q., Liu, B., Li, R.: Dynamical sampling in multiply generated shift-invariant spaces. Appl. Anal., 96, 760–770 (2017)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Institute of Mathematics, Academy of Mathematics and Systems Science (CAS), Chinese Mathematical Society (CAS) and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of ScienceTianjin University of TechnologyTianjinP. R. China
  2. 2.School of Mathematical Sciences and LPMCNankai UniversityTianjinP. R. China

Personalised recommendations