Acta Mathematica Sinica, English Series

, Volume 34, Issue 12, pp 1765–1777 | Cite as

Topological Entropy of a Class of Subshifts of Finite Type

  • Jin Zhong Xu
  • Lan Yu Wang


In this paper, we construct a special class of subshifts of finite type. By studying the spectral radius of the transfer matrix associated with the subshift of finite type, we obtain an estimation of its topological entropy. Interestingly, we find that the topological entropy of this class of subshifts of finite type converges monotonically to log(n + 1) (a constant only depends on the structure of the transfer matrices) as the increasing of the order of the transfer matrices.


Symbolic dynamical system subshift of finite type topological entropy transfer matrix Toeplitz matrix 

MR(2010) Subject Classification

54H20 37B10 37B40 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We thank the referees for their useful comments.


  1. [1]
    Adler, R. L., Konheim, A. G., McAndrew, M. H.: Topological entropy. Trans. Amer. Math. Soc., 114(2), 309–319 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    Bowen, R.: Markov partitions for Axiom A diffeomorphisms. Amer. J. Math., 92(3), 725–747 (1970)MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    Böttcher, A., Grudsky, S. M.: Toeplitz Matrices, Asymptotic Linear Algebra, and Functional Analysis, Birkhäuser, Basel, 2012zbMATHGoogle Scholar
  4. [4]
    Böttcher, A., Silbermann, B.: Toeplitz matrices and determinants with Fisher–Hartwig symbols. J. Funct. Anal., 63(2), 178–214 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    Crannell, A., May, S., Hilbert, L.: Shifts of finite type and Fibonacci Harps. Appl. Math. Lett., 20(2), 138–141 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    Deift, P., Its, A., Krasovsky, I.: Toeplitz matrices and Toeplitz determinants under the impetus of the Ising model: some history and some recent results. Comm. Pure Appl. Math., 66(9), 1360–1438 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    Fan, A., Liao, L., Wang, Y. F., et al.: p-adic repellers in Qp are subshifts of finite type. Comptes Rendus Mathematique, 344(4), 219–224 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    Golub, G. H., Van, Loan, C. F.: Matrix Computations, JHU Press, Baltimore, 2012zbMATHGoogle Scholar
  9. [9]
    Gray, R. M.: Toeplitz and circulant matrices: A review. Foundations and Trends in Communications and Information Theory, 2(3), 155–239 (2006)CrossRefzbMATHGoogle Scholar
  10. [10]
    Horn, R. A., Johnson, C. R.: Matrix Analysis, Cambridge University Press, Cambridge, 2012CrossRefGoogle Scholar
  11. [11]
    Lind, D., Brian, M.: An Introduction to Symbolic Dynamics and Coding, Cambridge University Press, Cambridge, 1995CrossRefzbMATHGoogle Scholar
  12. [12]
    Quas, A. N., Paul, B. T.: Subshifts of multi-dimensional shifts of finite type. Ergodic Theory Dynam. Systems, 20(3), 859–874 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    Robinson, C.: Dynamical Systems: Stability, Symbolic Dynamics, and Chaos, CRC Press, Boca Raton, 1995zbMATHGoogle Scholar
  14. [14]
    Shi, Y., Ju, H., Chen, G.: Coupled-expanding maps and one-sided symbolic dynamical systems. Chaos Solitons Fractals, 39(5), 2138–2149 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    Walters, P.: An Introduction to Ergodic Theory, Springer-Verlag, New York, 2000zbMATHGoogle Scholar
  16. [16]
    Wang, H. Y., Xiong, J. C.: Chaos for subshifts of finite type. Acta Math. Sin. Engl. Ser., 21(6), 1407–1414 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    Zhou, Z. L., Yin, J. D., Xu, S. Y.: Topological Dynamical Systems–From Topology to Ergodic Theory, the Modern Mathematical Basis Books (Chinese Edition), Science Press, Beijing, 2011Google Scholar

Copyright information

© Institute of Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Chinese Mathematical Society and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory of Space Utilization, Technology and Engineering Center for Space UtilizationChinese Academy of SciencesBeijingP. R. China
  2. 2.University of Chinese Academy of SciencesBeijingP. R. China
  3. 3.Academy of Mathematics and Systems ScienceChinese Academy of SciencesBeijingP. R. China

Personalised recommendations