Acta Mathematica Sinica, English Series

, Volume 34, Issue 3, pp 563–596 | Cite as

On Some Families of Smooth Affine Spherical Varieties of Full Rank

  • Kay Paulus
  • Guido Pezzini
  • Bart Van Steirteghem


Let G be a complex connected reductive group. Losev has shown that a smooth affine spherical G-variety X is uniquely determined by its weight monoid, which is the set of irreducible representations of G that occur in the coordinate ring of X. In this paper we use a combinatorial characterization of the weight monoids of smooth affine spherical varieties to classify: (a) all such varieties for G = SL(2) × ℂ × and (b) all such varieties for G simple which have a G-saturated weight monoid of full rank. We also use the characterization and Knop’s classification theorem for multiplicity free Hamiltonian manifolds to give a new proof of Woodward’s result that every reflective Delzant polytope is the moment polytope of such a manifold.


Affine spherical variety weight monoid multiplicity free Hamiltonian manifold moment polytope 

MR(2010) Subject Classification

14M27 20G05 53D20 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors wish to thank Michel Brion and Baohua Fu for organizing the International Conference on Spherical Varieties at the Tsinghua Sanya International Mathematics Forum in November 2016. Van Steirteghem presented some of the results in this paper during his talk at the Conference, and is grateful for the invitation.


  1. [1]
    Avdeev, R.: Extended, weight semigroups of affine spherical homogeneous spaces of nonsimple semisimple algebraic groups. Izv. Math., 74 (6), 1103–1126 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    Avdeev, R., Cupit-Foutou, S.: New and Old Results on Spherical Varieties Via Moduli Theory, arXiv: 1508.00268v2 [math.AG], 2015zbMATHGoogle Scholar
  3. [3]
    Bruns, W., Gubeladze, J.: Polytopes, Rings, and K-theory, Springer Monographs in Mathematics, Springer, Dordrecht, 2009zbMATHGoogle Scholar
  4. [4]
    Bourbaki, N.: Éléments de, mathématique. Fasc. XXXIV. Groupes et algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: systèmes de racines, Actualités Scientifiques et Industrielles, No. 1337, Hermann, Paris, 1968zbMATHGoogle Scholar
  5. [5]
    Bravi, P., Pezzini, G.: The spherical systems of the wonderful reductive subgroups. J. Lie Theory, 25 (1), 105–123 (2015)MathSciNetzbMATHGoogle Scholar
  6. [6]
    Benson, C., Ratcliff, G.: A classification of multiplicity free actions. J. Algebra, 181 (1), 152–186 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    Brion, M.: Classification des espaces homogènes sphériques. Compositio Math., 63 (2), 189–208 (1987)MathSciNetzbMATHGoogle Scholar
  8. [8]
    Brion, M.: Sur l’image de l’application moment, Séminaire d’algèbre Paul Dubreil et Marie-Paule Malliavin (Paris, 1986), Lecture Notes in Math., vol. 1296, Springer, Berlin, 1987, pp. 177–192Google Scholar
  9. [9]
    Bravi, P., Steirteghem, Van Steirteghem, B.: The moduli scheme of affine spherical varieties with a free weight monoid. Int. Math. Res. Not. IMRN, 15, 4544–4587 (2016)MathSciNetCrossRefGoogle Scholar
  10. [10]
    Camus, R.: Variétés sphériques affines lisses, Ph.D. thesis, Institut Fourier, Grenoble, 2001Google Scholar
  11. [11]
    Delzant, T.: Hamiltoniens périodiques et images convexes de l’application moment. Bull. Soc. Math. France, 116 (3), 315–339 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    Fulton, W.: Introduction to toric varieties, Annals of Mathematics Studies, vol. 131, Princeton University Press, Princeton, NJ, 1993, The William H. Roever Lectures in GeometryGoogle Scholar
  13. [13]
    Gandini, J.: Spherical orbit closures in simple projective spaces and their normalizations. Transform. Groups, 16 (1), 109–136 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    Guillemin, V., Sternberg, S.: Multiplicity-free spaces. J. Differential Geom., 19 (1), 31–56 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    Iglésias, P.: Les SO(3)-variétés symplectiques et leur classification en dimension 4. Bull. Soc. Math. France, 119 (3), 371–396 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    Kac, V. G.: Some remarks on nilpotent orbits. J. Algebra, 64 (1), 190–213 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    Kim, W. G.: On the free and G-saturated weight monoids of smooth affine spherical varieties for G = SL(n), Ph.D. thesis, The Graduate Center, City University of New York, 2016, available at etds/1598/Google Scholar
  18. [18]
    Kirwan, F.: Convexity properties of the moment mapping. III. Invent. Math., 77 (3), 547–552 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    Knop, F.: Automorphisms, root systems, and compactifications of homogeneous varieties. J. Amer. Math. Soc., 9 (1), 153–174 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    Knop, F.: Some remarks on multiplicity free spaces, Representation theories and algebraic geometry (Montreal, PQ, 1997), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 514, Kluwer Acad. Publ., Dordrecht, 1998, 301–317Google Scholar
  21. [21]
    Knop, F.: Automorphisms of multiplicity free Hamiltonian manifolds. J. Amer. Math. Soc., 24 (2), 567–601 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    Knop, F.: Multiplicity free quasi-Hamiltonian manifolds, arXiv:1612.03843v2 [math.SG], 2016Google Scholar
  23. [23]
    Knop, F., Pezzini, G., Van Steirteghem, B.: Weight monoids of smooth affine spherical varieties.Google Scholar
  24. [24]
    Knop, F., Van Steirteghem, B.: Classification of smooth affine spherical varieties. Transform. Groups, 11 (3), 495–516 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  25. [25]
    Krämer, M.: Sphärische Untergruppen in kompakten zusammenhängenden Liegruppen. Compositio Math., 38 (2), 129–153 (1979)MathSciNetzbMATHGoogle Scholar
  26. [26]
    Lang, S.: Algebra, Second ed., Addison-Wesley Publishing Company, Advanced Book Program, Reading, MA, 1984Google Scholar
  27. [27]
    Leahy, A. S.: A classification of multiplicity free representations. J. Lie Theory, 8 (2), 367–391 (1998)MathSciNetzbMATHGoogle Scholar
  28. [28]
    Losev, I. V.: Proof of the Knop conjecture. Ann. Inst. Fourier (Grenoble), 59 (3), 1105–1134 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  29. [29]
    Losev, I. V.: Uniqueness property for spherical homogeneous spaces. Duke Math. J., 147 (2), 315–343 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  30. [30]
    Luna, D.: Variétés sphériques de type A. Publ. Math. Inst. Hautes ´ Etudes Sci., 94, 161–226 (2001)CrossRefzbMATHGoogle Scholar
  31. [31]
    Luna, D.: La variété magnifique modèle. J. Algebra, 313 (1), 292–319 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  32. [32]
    Mikityuk, I. V.: On the integrability of invariant Hamiltonian systems with homogeneous configuration spaces. Math. USSR-Sb., 57 (2), 527–546 (1987)CrossRefzbMATHGoogle Scholar
  33. [33]
    Paulus, K.: Some momentum polytopes for multiplicity free quasi-hamiltonian manifolds, Ph.D. thesis, FAU Erlangen–Nürnberg, in preparationGoogle Scholar
  34. [34]
    Pezzini, G., Van Steirteghem, B.: Combinatorial characterization of the weight monoids of smooth affine spherical varieties, arXiv:1510.04266v2 [math.AG], 2016Google Scholar
  35. [35]
    The Sage Developers: Sagemath, the Sage Mathematics Software System, 2016, http://www.sagemath.orgGoogle Scholar
  36. [36]
    Sjamaar, R.: Convexity properties of the moment mapping re-examined. Adv. Math., 138 (1), 46–91 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  37. [37]
    Van Steirteghem, B.: Various interpretations of the root system(s) of a spherical variety. Oberwolfach Reports, 10, 1464–1467 (2013)Google Scholar
  38. [38]
    Vinberg, È. B., Kimel’fel’d, B. N.: Homogeneous domains on flag manifolds and spherical subgroups of semisimple Lie groups. Funct. Anal. Appl., 12 (3), 168–174 (1978)CrossRefzbMATHGoogle Scholar
  39. [39]
    Woodward, C. T.: The classification of transversal multiplicity-free group actions. Ann. Global Anal. Geom, 14 (1), 3–42 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  40. [40]
    Woodward, C. T.: Spherical varieties and existence of invariant Kähler structures. Duke Math. J., 93 (2), 345–377 (1998)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Institute of Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Chinese Mathematical Society and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Kay Paulus
    • 1
  • Guido Pezzini
    • 2
  • Bart Van Steirteghem
    • 1
    • 3
  1. 1.Department MathematikFAU Erlangen-NürnbergErlangenGermany
  2. 2.Dipartimento di Matematica“Sapienza” Università di RomaRomaItaly
  3. 3.Department of MathematicsMedgar Evers College-City University of New YorkBrooklynUSA

Personalised recommendations