Advertisement

Quadratic Lie Superalgebras Generalized by Balinsky–Novikov Superalgebras

  • Yi Tao
  • Zhi Qi Chen
  • Yan WangEmail author
Article
  • 1 Downloads

Abstract

Balinsky–Novikov superalgebras were introduced by Balinsky for constructing super-Vira-soro type Lie superalgebras. In this paper, we give sufficient and necessary conditions for a Lie superalgebra generalized by a Balinsky–Novikov superalgebra with dimension 2|2 to be a quadratic Lie superalgebra.

Keywords

Balinsky–Novikov superalgebra Lie superalgebra quadratic Lie superalgebra 

MR(2010) Subject Classification

17B65 17A70 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors are very grateful for the helpful comments and suggestions from the referees.

References

  1. [1]
    Albuquerque, H., Barreiro, E., Benayadi, S.: Odd-quadratic Lie superalgebras. J. Geom. Phys., 60(2), 230–250 (2010)CrossRefzbMATHGoogle Scholar
  2. [2]
    Balinsky, A. A.: Classification of the virasoro, the Neveu–Schwarz, and the Ramond-type simple Lie superalegrbas. Funct. Anal. Appl., 21(4), 308–309 (1987)CrossRefGoogle Scholar
  3. [3]
    Benamor, H., Benayadi, S.: Double extension of quadratic Lie superalgebras. Comm. Algebra, 27(1), 67–88 (1999)CrossRefzbMATHGoogle Scholar
  4. [4]
    Bordemann, M.: Nondegenerate invariant bilinear forms on nonassociative algebras. Acta Math. Univ. Comenianae, 66(2), 151–201 (1997)zbMATHGoogle Scholar
  5. [5]
    Favre, G., Santharoubane, L. J.: Symmetric, invariant, nondegenerate bilinear form on a Lie algebra. J. Algebra, 105(2), 451–464 (1987)CrossRefzbMATHGoogle Scholar
  6. [6]
    Figueroa-O’Farrill, J. M., Stanciu, S.: Nonreductive WZW models and their CFTs. Nuclear Phys. B, 458(1), 137–164 (1996)CrossRefzbMATHGoogle Scholar
  7. [7]
    Gould, M. D., Zhang, R. B., Bracken, A. J.: Lie bi-superalgebras and the graded classical Yang–Baxter equation. Rev. Math. Phys., 3(02), 223–240 (1991)CrossRefzbMATHGoogle Scholar
  8. [8]
    Green, M. B., Schwarz, J. H., Witten, E.: Superstring Theory, vols. I and II, Cambridge University Press, Cambridge, 1987zbMATHGoogle Scholar
  9. [9]
    Guo, H. Y., Shen, J. M., Wang, S. K., et al.: Beltrami algebra and symmetry of the Beltrami equation on Riemann surfaces. J. Math. Phys., 31(11), 2543–2547 (1990)CrossRefzbMATHGoogle Scholar
  10. [10]
    Hofmann, K. H., Keith, V. S.: Invariant quadratic forms on finite dimensional Lie algebras. Bull. Austral. Math. Soc., 33(01), 21–36 (1986)CrossRefzbMATHGoogle Scholar
  11. [11]
    Kac, V. G.: Lie superalgebras. Adv. Math., 26, 8–96 (1977)CrossRefzbMATHGoogle Scholar
  12. [12]
    Kac, V. G.: Representations of classical Lie superalgebras, In: Differential geometrical methods in mathematical physics II, Springer Berlin Heidelberg, 597–626 (1978)CrossRefGoogle Scholar
  13. [13]
    Medina, A., Revoy, P.: Algebres de Lie et produit scalaire invariant. Ann. Sci. École Norm. Sup., 18(3), 553–561 (1985)CrossRefzbMATHGoogle Scholar
  14. [14]
    Mphammedi, N.: Wess–Zumino–Novikov–Witten models based on Lie superalgebras. Phys. Lett. B, 331(1–2), 93–98 (1994)CrossRefGoogle Scholar
  15. [15]
    Pei, Y. F., Bai, C. M.: Balinsky–Novikov superalgebras and some infinite-dimensional Lie superalgebras. J. Algebra Appl., 11(06), 1250119 (2012)CrossRefzbMATHGoogle Scholar
  16. [16]
    Scheunert, M.: The theory of Lie Superalgebras, Springer Berlin, Heidelberg, New York, 1979CrossRefzbMATHGoogle Scholar
  17. [17]
    Wang, Y., Chen, Z. Q., Bai, C. M.: Classification of Balinsky–Novikov superalgebras with dimension 2|2. J. Phys. A, 45(22), 225201 (2012)CrossRefzbMATHGoogle Scholar

Copyright information

© Institute of Mathematics, Academy of Mathematics and Systems Science (CAS), Chinese Mathematical Society (CAS) and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Chern Institute of MathematicsNankai UniversityTianjinP. R. China
  2. 2.School of Mathematical Science & LPMCNankai UniversityTianjinP. R. China
  3. 3.School of MathematicsTianjin UniversityTianjinP. R. China

Personalised recommendations