On Absolute Nörlund Spaces and Matrix Operators
Article
First Online:
Received:
Accepted:
- 41 Downloads
Abstract
In a more recent paper, the second author has introduced a space |C α | k as the set of all series by absolute summable using Cesàro matrix of order α > −1. In the present paper we extend it to the absolute Nörlund space |N p θ | k taking Nörlund matrix in place of Cesàro matrix, and also examine some topological structures, α-β-γ-duals and the Schauder base of this space. Further we characterize certain matrix operators on that space and determine their operator norms, and so extend some well-known results.
Keywords
Sequence spaces absolute Nörlund summability dual spaces matrix transformations bounded linear operator BK spacesMR(2010) Subject Classification
40C05 40D25 40F05 46A45Preview
Unable to display preview. Download preview PDF.
References
- [1]Altay, B., Başar, F.: Generalization of the sequence space l(p) derived by weighted mean. J. Math. Anal. Appl., 330, 174–185 (2007)CrossRefMATHGoogle Scholar
- [2]Başarır, M., Kara, E. E.: On the mth order difference sequence space of generalized weighted mean and compact operators. Acta Math. Sci., 33, 797–813 (2013)CrossRefMATHGoogle Scholar
- [3]Bor, H.: Some equivalence theorems on absolute summability methods. Acta Math. Hung., 149, 208–214 (2016)CrossRefMATHGoogle Scholar
- [4]Bor, H.: On \({\left| {\overline N ,{p_n}} \right|_k}\) ksummability factors of infinite series. Tamkang J. Math., 16, 13–20 (1985)Google Scholar
- [5]Borwein, D., Cass, F. P.: Strong Nörlund summability. Math. Zeitschr., 103, 94–111 (1968)CrossRefMATHGoogle Scholar
- [6]Bosanquet, L. S., Das G.: Absolute summability factors for Nörlund means. Proc. London Math. Soc., 38(3), 1–52 (1979)CrossRefMATHGoogle Scholar
- [7]Bosanquet, L. S.: Review of [38]. Math. Reviews, MR0034861 (11, 654B9) 1950Google Scholar
- [8]Bosanquet, L. S., Chow, H. C.: Some remarks on convergence and summability factors. J. London Math. Soc., 32, 73–82 (1957)CrossRefMATHGoogle Scholar
- [9]Chow, H. C.: Note on convergence and summability factors. J. London Math. Soc., 29, 459–476 (1954)CrossRefMATHGoogle Scholar
- [10]Das, G.: A Tauberian theorem for absolute summability. Proc. Cambridge Philos., 67, 321–326 (1970)CrossRefMATHGoogle Scholar
- [11]Et, M., Işık, M.: On pα-dual spaces of generalized difference sequence spaces. Applied Math. Letters, 25, 1486–1489 (2012)CrossRefMATHGoogle Scholar
- [12]Flett, T. M.: On an extension of absolute summability and some theorems of Littlewood and Paley. Proc. London Math. Soc., 7, 113–141 (1957)CrossRefMATHGoogle Scholar
- [13]Kara, E. E., İlkhan, M.: Some properties of generalized Fibonacci sequence spaces. Linear Multil. Algebra, 64, 2208–2223 (2016)CrossRefMATHGoogle Scholar
- [14]Hazar, G. C., Sarıgöl, M. A.: Compact and matrix operators on the space |C−1|k. J. Comput. Anal. Appl., 25(6), 1014–1024 (2018)Google Scholar
- [15]Kara, E. E., Demiriz, S.: Some new paranormed difference sequence spaces derived by Fibonacci numbers. Miskolc Mathematical Notes, 16 (2), 907–923 (2015)CrossRefMATHGoogle Scholar
- [16]Karakaya, V., Noman, A., K., Polat, H.: On paranormed λ-sequence spaces of non-absolute type. Math. Comp. Model., 54, 1473–1480 (2011)CrossRefMATHGoogle Scholar
- [17]Kogbetliantz, E.: Sur lesseries absolument sommables par la methods des moyannes arithmetiques. Bull. des Sci. Math., 49, 234–256 (1925)MATHGoogle Scholar
- [18]Kuttner, B.: Some remarks on summability factors. Indian J. Pure Appl. Math., 16 (9), 1017–1027 (1925)MATHGoogle Scholar
- [19]Maddox, I. J.: Elements of Functinal Analysis, Cambridge University Press, London, New York, 1970Google Scholar
- [20]Mazhar, S. M.: On the absolute summability factors of infinite series. Tohoku Math. J., 23, 433–451 (1971)CrossRefMATHGoogle Scholar
- [21]Mears, M. F.: Absolute regularity and the Nörlund mean. Annals of Math., 38 (3), 594–601 (1937)CrossRefMATHGoogle Scholar
- [22]Mehdi, M. R.: Summability factors for generalized absolute summability I. Proc. London Math. Soc.,, 10(3), 180–199 (1960)CrossRefMATHGoogle Scholar
- [23]McFadden, L.: Absolute Nörlund summability. Duke Math. J., 9, 168–207 (1942)CrossRefMATHGoogle Scholar
- [24]Mohapatra, R. N., Das, G.: Summability factors of lower-semi matrix transformations. Monatshefte für Math., 79, 307–3015 (1975)CrossRefMATHGoogle Scholar
- [25]Mursaleen, M., Noman, A. K.: Applications of the Hausdorff measure of noncompactness in some sequence spaces of weighted means. Comp. Math. App., 60, 1245–1258 (2010)CrossRefMATHGoogle Scholar
- [26]Orhan, C., Sarıgöl, M. A.: On absolute weighted mean summability. Rocky Moun. J. Math., 23(3), 1091–1097 (1993)MATHGoogle Scholar
- [27]Sarıgöl, M. A.: Spaces of series summable by absolute Cesàro and matrix operators. Comm. Math Appl., 7(1), 11–22 (2016)Google Scholar
- [28]Sarıgöl, M. A.: Extension of Mazhar’s theorem on summability factors. Kuwait J. Sci., 42(3), 28–35 (2015)Google Scholar
- [29]Sarıgöl, M. A.: Matrix operators on A k. Math. Comp. Model., 55, 1763–1769 (2012)CrossRefMATHGoogle Scholar
- [30]Sarıgöl, M. A.: Matrix transformatins on fields of absolute weighted mean summability. Studia Sci. Math. Hungar., 48(3), 331–341 (2011)MATHGoogle Scholar
- [31]Sarıgöl, M. A.: On local properties of factored Fourier series. App. Math. Comput., 216, 3386–3390 (2010)CrossRefMATHGoogle Scholar
- [32]Sarıgöl, M. A.: On two absolute Riesz summability factors of infinite series. Proc. Amer. Math. Soc., 118, 485–488 (1993)CrossRefMATHGoogle Scholar
- [33]Sarıgöl, M. A.: A note on summability. Studia Sci. Math. Hungar., 28, 395–400 (1993)MATHGoogle Scholar
- [34]Sarıgöl, M. A.: On absolute weighted mean summability methods. Proc. Amer. Math. Soc., 115(1), 157–160 (1992)CrossRefMATHGoogle Scholar
- [35]Sarıgöl, M. A.: Necessary and sufficient conditions for the equivalence of the summability methods \({\left| {\overline N ,{p_n}} \right|_k}\) and |C, 1|k. Indian J. Pure Appl. Math., 22(6), 483–489 (1991)MATHGoogle Scholar
- [36]Stieglitz, M., Tietz, H.: Matrixtransformationen von Folgenraumen Eine Ergebnisüberischt. Math Z., 154, 1–16 (1977)CrossRefMATHGoogle Scholar
- [37]Sulaiman, W. T.: On summability factors of infinite series. Proc. Amer. Math. Soc., 115, 313–317 (1992)CrossRefMATHGoogle Scholar
- [38]Sunouchi, G.: Notes on Fourier Analysis, 18, absolute summability of a series with constant terms. Tohoku Math. J., 1, 57–65 (1949)CrossRefMATHGoogle Scholar
- [39]Thorpe, B.: Matrix transformations of Cesàro summable series. Acta Math. Hung., 48, 255–265 (1986)CrossRefMATHGoogle Scholar
- [40]Wilansky, A.: Summability Through Functional Analysis, Elsevier Science Publisher, North-Holland, Amsterdam, 1984MATHGoogle Scholar
Copyright information
© Institute of Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Chinese Mathematical Society and Springer-Verlag GmbH Germany, part of Springer Nature 2017