Acta Mathematica Sinica, English Series

, Volume 32, Issue 2, pp 137–152 | Cite as

Some specific unboundedness property in smoothness Morrey spaces. The non-existence of growth envelopes in the subcritical case

  • Dorothee D. HaroskeEmail author
  • Susana D. Moura


We study smoothness spaces of Morrey type on R n and characterise in detail those situations when such spaces of type A p,q s,τ (R n ) or A u,p,q s (R n ) are not embedded into L (R n ). We can show that in the so-called sub-critical, proper Morrey case their growth envelope function is always infinite which is a much stronger assertion. The same applies for the Morrey spaces M u,p (R n ) with p < u. This is the first result in this direction and essentially contributes to a better understanding of the structure of the above spaces.


Besov-type space Morrey space Besov–Morrey space Triebel–Lizorkin–Morrey space growth envelope atomic decomposition 

MR(2010) Subject Classification

46E35 42B35 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Bennett, C., Sharpley, R.: Interpolation of Operators, Academic Press, Boston, 1988zbMATHGoogle Scholar
  2. [2]
    Dafni, G., Xiao, J.: Some new tent spaces and duality theorems for fractional Carleson measures and Q α(Rn). J. Funct. Anal., 208, 377–422 (2004)zbMATHMathSciNetCrossRefGoogle Scholar
  3. [3]
    Edmunds, D. E., Triebel, H.: Function Spaces, Entropy Numbers, Differential Operators, Cambridge Univ. Press, Cambridge, 1996zbMATHCrossRefGoogle Scholar
  4. [4]
    El Baraka, A.: An embedding theorem for Campanato spaces. Electron. J. Differential Equations, 66, 1–17 (2002)MathSciNetGoogle Scholar
  5. [5]
    El Baraka, A.: Function spaces of BMO and Campanato type, Proc. of the 2002 Fez Conference on Partial Differential Equations, 109–115 (electronic), Electron. J. Differ. Equ. Conf. 9, Southwest Texas State Univ., San Marcos, TX, 2002Google Scholar
  6. [6]
    El Baraka, A.: Littlewood–Paley characterization for Campanato spaces. J. Funct. Spaces Appl., 4, 193–220 (2006)zbMATHMathSciNetCrossRefGoogle Scholar
  7. [7]
    Essén, M., Janson, S., Peng, L., et al.: Q spaces of several real variables. Indiana Univ. Math. J., 49, 575–615 (2000)zbMATHMathSciNetCrossRefGoogle Scholar
  8. [8]
    Haroske, D. D.: Limiting Embeddings, Entropy Numbers and Envelopes in Function Spaces, Habilitationsschrift, Friedrich-Schiller-Universität Jena, Germany, 2002Google Scholar
  9. [9]
    Haroske, D. D.: Envelopes and Sharp Embeddings of Function Spaces, volume 437 of Chapman & Hall/CRC Research Notes in Mathematics, Chapman & Hall/CRC, Boca Raton, FL, 2007Google Scholar
  10. [10]
    Haroske, D. D., Skrzypczak, L.: Continuous embeddings of Besov–Morrey function spaces. Acta Math. Sin., Engl. Ser., 28, 1307–1328 (2012)zbMATHMathSciNetCrossRefGoogle Scholar
  11. [11]
    Haroske, D. D., Skrzypczak, L.: Embeddings of Besov–Morrey spaces on bounded domains. Studia Math., 218, 119–144 (2013)zbMATHMathSciNetCrossRefGoogle Scholar
  12. [12]
    Haroske, D. D., Skrzypczak, L.: On Sobolev and Franke–Jawerth embeddings of smoothness Morrey spaces. Rev. Mat. Complut., 27, 541–573 (2014)zbMATHMathSciNetCrossRefGoogle Scholar
  13. [13]
    Kozono, H., Yamazaki, M.: Semilinear heat equations and the Navier–Stokes equation with distributions in new function spaces as initial data. Comm. Partial Differential Equations, 19, 959–1014 (1994)zbMATHMathSciNetCrossRefGoogle Scholar
  14. [14]
    Li, P., Xiao, J., Yang, Q.: Global mild solutions to modified Navier–Stokes equations with small initial data in critical Besov-Q spaces. Electron. J. Differential Equations, 2014(185), 37 pp. (2014)MathSciNetGoogle Scholar
  15. [15]
    Mazzucato, A. L.: Besov–Morrey spaces: function space theory and applications to non-linear PDE. Trans. Amer. Math. Soc., 355, 1297–1364 (2003)zbMATHMathSciNetCrossRefGoogle Scholar
  16. [16]
    Morrey, C. B.: On the solutions of quasi-linear elliptic partial differential equations. Trans. Amer. Math. Soc., 43, 126–166 (1938)MathSciNetCrossRefGoogle Scholar
  17. [17]
    Peetre, J.: On the theory of L p,λ spaces. J. Funct. Anal., 4, 71–87 (1969)zbMATHMathSciNetCrossRefGoogle Scholar
  18. [18]
    Rosenthal, M.: Local means, wavelet bases, representations, and isomorphisms in Besov–Morrey and Triebel–Lizorkin–Morrey spaces. Math. Nachr., 286, 59–87 (2013)zbMATHMathSciNetCrossRefGoogle Scholar
  19. [19]
    Rosenthal, M., Triebel, H.: Calderón–Zygmund operators in Morrey spaces. Rev. Mat. Complut., 27(1), 1–11 (2014)zbMATHMathSciNetCrossRefGoogle Scholar
  20. [20]
    Rosenthal, M., Triebel, H.: Morrey spaces, their duals and preduals. Rev. Mat. Complut., 28(1), 1–30 (2015)zbMATHMathSciNetCrossRefGoogle Scholar
  21. [21]
    Sawano, Y.: Wavelet characterizations of Besov–Morrey and Triebel–Lizorkin–Morrey spaces. Funct. Approx. Comment. Math., 38, 93–107 (2008)zbMATHMathSciNetCrossRefGoogle Scholar
  22. [22]
    Sawano, Y.: A note on Besov–Morrey spaces and Triebel–Lizorkin–Morrey spaces. Acta Math. Sin., Engl. Ser., 25, 1223–1242 (2009)zbMATHMathSciNetCrossRefGoogle Scholar
  23. [23]
    Sawano, Y.: Brezis–Gallouët–Wainger type inequality for Besov–Morrey spaces. Studia Math., 196, 91–101 (2010)zbMATHMathSciNetCrossRefGoogle Scholar
  24. [24]
    Sawano, Y., Tanaka, H., Decompositions of Besov–Morrey spaces and Triebel–Lizorkin–Morrey spaces. Math. Z., 257, 871–905 (2007)zbMATHMathSciNetCrossRefGoogle Scholar
  25. [25]
    Sawano, Y., Tanaka, H.: Besov–Morrey spaces and Triebel–Lizorkin–Morrey spaces for non-doubling measures. Math. Nachr., 282, 1788–1810 (2009)zbMATHMathSciNetCrossRefGoogle Scholar
  26. [26]
    Seeger, A., Trebels, W.: Low regularity classes and entropy numbers. Arch. Math., 92, 147–157 (2009)zbMATHMathSciNetCrossRefGoogle Scholar
  27. [27]
    Sickel, W.: Smoothness spaces related to Morrey spaces — a survey. I. Eurasian Math. J., 3, 110–149 (2012)zbMATHMathSciNetGoogle Scholar
  28. [28]
    Sickel, W.: Smoothness spaces related to Morrey spaces — a survey. II. Eurasian Math. J., 4, 82–124 (2013)zbMATHMathSciNetGoogle Scholar
  29. [29]
    Sickel, W., Triebel, H.: Hölder inequalities and sharp embeddings in function spaces of Bs p,q and Fs p,q type. Z. Anal. Anwendungen, 14, 105–140 (1995)zbMATHMathSciNetCrossRefGoogle Scholar
  30. [30]
    Sobolev, S. L.: Sur un théorème d’analyse fonctionnelle (in Russian). Mat. Sb., N. Ser. 4, 471–497 (1938); English translation in: Amer. Math. Soc., Transl., II. Ser., 34, 39–68 (1963)zbMATHGoogle Scholar
  31. [31]
    Tang, L., Xu, J.: Some properties of Morrey type Besov–Triebel spaces. Math. Nachr., 278, 904–917 (2005)zbMATHMathSciNetCrossRefGoogle Scholar
  32. [32]
    Triebel, H.: Theory of Function Spaces, Birkhäuser, Basel, 1983CrossRefGoogle Scholar
  33. [33]
    Triebel, H.: Theory of Function Spaces. II, Birkhäuser, Basel, 1992zbMATHCrossRefGoogle Scholar
  34. [34]
    Triebel, H.: The Structure of Functions, Birkhäuser, Basel, 2001zbMATHCrossRefGoogle Scholar
  35. [35]
    Triebel, H.: Theory of Function Spaces. III, Birkhäuser, Basel, 2006zbMATHGoogle Scholar
  36. [36]
    Triebel, H.: Local Function Spaces, Heat and Navier–Stokes Equations, EMS Tracts in Mathematics 20, European Mathematical Society (EMS), Zürich, 2013CrossRefGoogle Scholar
  37. [37]
    Triebel, H.: Hybrid Function Spaces, Heat and Navier–Stokes Equations, EMS Tracts in Mathematics 24, European Mathematical Society (EMS), Zürich, 2015CrossRefGoogle Scholar
  38. [38]
    Vybíral, J.: On sharp embeddings of Besov and Triebel–Lizorkin spaces in the subcritical case. Proc. Amer. Math. Soc., 138(1), 141–146 (2010)zbMATHMathSciNetCrossRefGoogle Scholar
  39. [39]
    Xiao, J.: Holomorphic Q Classes, Lecture Notes in Math., 1767, Springer, Berlin, 2001Google Scholar
  40. [40]
    Xiao, J.: Geometric Qp Functions, Birkhäuser Verlag, Basel, 2006Google Scholar
  41. [41]
    Yang, D., Yuan, W.: A new class of function spaces connecting Triebel–Lizorkin spaces and Q spaces. J. Funct. Anal., 255, 2760–2809 (2008)zbMATHMathSciNetCrossRefGoogle Scholar
  42. [42]
    Yang, D., Yuan, W.: New Besov-type spaces and Triebel–Lizorkin-type spaces including Q spaces. Math. Z., 265, 451–480 (2010)zbMATHMathSciNetCrossRefGoogle Scholar
  43. [43]
    Yang, D., Yuan, W.: Relations among Besov-type spaces, Triebel–Lizorkin-type spaces and generalized Carleson measure spaces. Appl. Anal., 92, 549–561 (2013)zbMATHMathSciNetCrossRefGoogle Scholar
  44. [44]
    Yuan, W., Haroske, D. D., Moura, S. D., et al.: Limiting embeddings in smoothness Morrey spaces, continuity envelopes and applications. J. Approx. Theory, 192, 306–335 (2015)zbMATHMathSciNetCrossRefGoogle Scholar
  45. [45]
    Yuan, W., Haroske, D. D., Skrzypczak, L., et al.: Embedding properties of Besov-type spaces. Appl. Anal., 94(2), 318–340 (2015)zbMATHMathSciNetCrossRefGoogle Scholar
  46. [46]
    Yuan, W., Haroske, D. D., Skrzypczak, L., et al.: Embedding properties of weighted Besov type spaces. Anal. Appl., 13(5), 507–553 (2015)MathSciNetCrossRefGoogle Scholar
  47. [47]
    Yuan, W., Sickel, W., Yang, D.: Morrey and Campanato Meet Besov, Lizorkin and Triebel, Lecture Notes in Mathematics 2005, Springer-Verlag, Berlin, 2010, xi+281 ppCrossRefGoogle Scholar
  48. [48]
    Yuan, W., Sickel, W., Yang, D.: On the coincidence of certain approaches to smoothness spaces related to Morrey spaces. Math. Nachr., 286, 1571–1584 (2013)zbMATHMathSciNetGoogle Scholar

Copyright information

© Institute of Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Chinese Mathematical Society and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Institute of MathematicsFriedrich-Schiller-University JenaJenaGermany

Personalised recommendations