Advertisement

Acta Mathematica Sinica, English Series

, Volume 31, Issue 12, pp 1970–1976 | Cite as

On harmonic K-quasiconformal mappings associated with asymmetric vertical strips

  • Zhi Gang WangEmail author
  • Lei ShiEmail author
  • Yue Ping JiangEmail author
Article
  • 73 Downloads

Abstract

In this paper, we discuss the sense-preserving univalent harmonic mappings from the unit disk D onto asymmetrical vertical strips \({\Omega _\alpha } = \left\{ {\omega :{\kern 1pt} \frac{{\alpha - \pi }}{{2\sin \alpha }} < \Re \left( \omega \right) < \frac{\alpha }{{2\sin \alpha }}} \right\},\frac{\pi }{2} \leqslant \alpha < \pi \) Such results as analytic representation formula, coefficient estimates, distortion theorem and area theorem are derived.

Keywords

Univalent harmonic mapping harmonic K-quasiconformal mapping asymmetric vertical strip 

MR(2010) Subject Classification

58E20 30C62 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Clunie, J., Sheil-Smail, T.: Harmonic univalent functions. Ann. Acad. Sci. Fenn. Ser. A. I Math., 9, 3–25 (1984)CrossRefMathSciNetzbMATHGoogle Scholar
  2. [2]
    Chen, S.-L., Ponnusamy, S., Wang, X.-T.: Integral means and coefficient estimates on planar harmonic mappings. Ann. Acad. Sci. Fenn. Math., 37, 69–79 (2012)CrossRefMathSciNetzbMATHGoogle Scholar
  3. [3]
    Dorff, M.: Harmonic univalent mappings onto asymmetric vertical strips. In “Proceedings of the Third CMFT’ 97 Conference” (N. Papamichael, S. Ruscheweyh, E. B. Saff, Eds.), 171–175, World Scientific, Singapore, 1999Google Scholar
  4. [4]
    Fu, D.-M., Huang, X.-Z.: Harmonic K-quasiconformal mappings from unit disk onto half planes. Bull. Malays. Math. Sci. Soc., DOI: 10.1007/s40840-015-0174-5 (2015)Google Scholar
  5. [5]
    Hernández, R., Martín, M. J.: Stable geometric properties of analytic and harmonic functions. Math. Proc. Cambridge Philos. Soc., 155, 343–359 (2013)CrossRefMathSciNetzbMATHGoogle Scholar
  6. [6]
    Hengartner, W., Schober, G.: Univalent harmonic functions. Trans. Amer. Math. Soc., 299, 1–31 (1987)CrossRefMathSciNetzbMATHGoogle Scholar
  7. [7]
    Huang, X.-Z.: Harmonic quasiconformal homeomorphism of the unit disk. Chinese Ann. Math. (Chin. Ser.), 29A, 519–524 (2008)Google Scholar
  8. [8]
    Huang, X.-Z.: Harmonic quasiconformal mappings on the upper half-plane. Complex Var. Elliptic Equ., 58, 1005–1011 (2013)CrossRefMathSciNetzbMATHGoogle Scholar
  9. [9]
    Huang, X.-Z.: Harmonic quasiconformal mappings from unit disk onto an infinite horizontal strip domain. Acta Math. Sinica, Chin. Series, 57, 875–880 (2014)Google Scholar
  10. [10]
    Kalaj, D.: Quasiconformal harmonic mapping between Jordan domains. Math. Z., 260, 237–252 (2008)CrossRefMathSciNetzbMATHGoogle Scholar
  11. [11]
    Kalaj, D., Mateljevic, M.: Quasiconformal harmonic mappings and generalizations. J. Anal., 18, 239–260 (2010)MathSciNetzbMATHGoogle Scholar
  12. [12]
    Kalaj, D., Pavlovic, M.: Boundary correspondence under harmonic diffeomorphisms of a half-plane. Ann. Acad. Sci. Fenn. Math., 30, 159–165 (2005)MathSciNetzbMATHGoogle Scholar
  13. [13]
    Kumar, R., Gupta, S., Singh, S., et al.: On harmonic convolutions involving a vertical strip mapping. Bull. Korean Math. Soc., 52, 105–123 (2015)CrossRefMathSciNetzbMATHGoogle Scholar
  14. [14]
    Li, L.-L., Ponnusamy, S.: Injectivity of sections of univalent harmonic mappings. Nonlinear Anal., 89, 276–283 (2013)CrossRefMathSciNetzbMATHGoogle Scholar
  15. [15]
    Majchrzak, W.: Harmonic univalent mappings of the unit disc onto a vertical strip. In: “Proceedings of the Third CMFT’ 97 Conference” (N. Papamichael, S. Ruscheweyh, E. B. Saff, Eds.), World Scientific, Singapore, 1999, 387–396Google Scholar
  16. [16]
    Majchrzak, W.: Harmonic univalent mappings into a half-plane with nonreal vertical slits. J. Math. Anal. Appl., 255, 519–534 (2001)CrossRefMathSciNetzbMATHGoogle Scholar
  17. [17]
    Öztürk, M.: Univalent harmonic mappings onto half planes. Turkish J. Math., 23, 301–313 (1999)MathSciNetzbMATHGoogle Scholar
  18. [18]
    Pavlovic, M.: Boundary correspondence under harmonic quasiconformal homemorphisms of the unit disk. Ann. Acad. Sci. Fenn. Math., 27, 365–372 (2002)MathSciNetzbMATHGoogle Scholar
  19. [19]
    Wang, Z.-G., Liu, Z.-H., Li, Y.-C.: On the linear combinations of harmonic univalent mappings. J. Math. Anal. Appl., 400, 452–459 (2013)CrossRefMathSciNetzbMATHGoogle Scholar

Copyright information

© Institute of Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Chinese Mathematical Society and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.School of Mathematics and Computing ScienceHu’nan First Normal UniversityChangshaP. R. China
  2. 2.School of Mathematics and StatisticsAnyang Normal UniversityAnyangP. R. China
  3. 3.School of Mathematics and EconometricsHu’nan UniversityChangshaP. R. China

Personalised recommendations