Acta Mathematica Sinica, English Series

, Volume 30, Issue 6, pp 1007–1020 | Cite as

Stable weakly shadowable volume-preserving systems are volume-hyperbolic

  • Mário Bessa
  • Manseob Lee
  • Sandra Vaz


We prove that any C 1-stable weakly shadowable volume-preserving diffeomorphism de-fined on a compact manifold displays a dominated splitting EF. Moreover, both E and F are volume-hyperbolic. Finally, we prove the version of this result for divergence-free vector fields. As a consequence, in low dimensions, we obtain global hyperbolicity.


Weak shadowing dominated splitting hyperbolicity 

MR(2010) Subject Classification

37C50 37D30 37C10 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Arbieto, A., Ribeiro, R.: Flows with the (asymptotic) average shadowing property on three-dimensional closed manifolds. Dyn. Syst., 26(4), 425–432 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  2. [2]
    Bessa, M.: Generic incompressible flows are topological mixing. C. R. Math. Acad. Sci. Paris, 346, 1169–1174 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  3. [3]
    Bessa M., Rocha, J.: On C 1-robust transitivity of volume-preserving flows. J. Differential Equations, 245(11), 3127–3143 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  4. [4]
    Bessa M., Rocha, J.: Homoclinic tangencies versus uniform hyperbolicity for conservative 3-flows. J. Differential Equations, 247(11), 2913–2923 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  5. [5]
    Bessa, M., Rocha, J.: Contributions to the geometric and ergodic theory of conservative flows. Ergodic Theory Dynam. Systems, 33(6), 1667–1708 (2013)CrossRefMathSciNetGoogle Scholar
  6. [6]
    Bessa, M., Rocha, J., Torres, M. J.: Shades of hyperbolicity for Hamiltonians. Nonlinearity, 26(10), 2851–2873 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  7. [7]
    Bessa, M., Vaz, S.: Stably weakly shadowing symplectic maps are partially hyperbolic. Comm. Korean Math. Soc., acceptedGoogle Scholar
  8. [8]
    Bonatti, C., Díaz, L., Pujals, E.: A C 1-generic dichotomy for diffeomorphisms: Weak forms of hyperbolicity or infinitely many sinks or sources. Ann. of Math. (2), 158(2), 355–418 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  9. [9]
    Bonatti, C., Díaz, L., Viana, M.: Dynamics beyond Uniform Hyperbolicity, EMS, 102, Springer, 2005Google Scholar
  10. [10]
    Bonatti, C., Gourmelon, N., Vivier, T.: Perturbations of the derivative along periodic orbits. Ergodic Theory Dynam. Systems, 26(5), 1307–1337 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  11. [11]
    Bonatti, C., Viana, M.: SRB measures for partially hyperbolic systems whose central direction is mostly contracting. Israel J. Math., 115, 157–193 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  12. [12]
    Bonatti, C., Crovisier, S.: Récurrence et généricité. Invent. Math., 158(1), 33–104 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  13. [13]
    Catalan, T.: A C 1-generic condition for existence of symbolic extensions of volume-preserving diffeomorphisms. Nonlinearity, 25(12), 3505–3525 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  14. [14]
    Crovisier, S.: Periodic orbits and chain-transitive sets of C 1-diffeomorphisms. Publ. Math. Inst. Hautes Études Sci., 104, 87–141 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  15. [15]
    Doering, C.: Persistently transitive vector fields on three-dimensional manifolds. In: Proc. Dynam. Systems Bifurc. Theory, 160, Pitman, 1987, 59–89MathSciNetGoogle Scholar
  16. [16]
    Fakhari, A, Lee, K., Tajbakhsh, K.: Diffeomorphisms with L p-shadowing property. Acta Math. Sin., Engl. Ser., 27(1), 19–28 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  17. [17]
    Ferreira, C.: Stability properties of divergence-free vector fields. Dyn. Syst., 27(2), 223–238 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  18. [18]
    Ferreira, C.: Shadowing, expansiveness and stability of divergence-free vector fields. Bull. Korean Math. Soc., 51(1), 67–76 (2014)CrossRefzbMATHMathSciNetGoogle Scholar
  19. [19]
    Gan, S., Sakai, K., Wen, L.: C 1-stably weakly shadowing homoclinic classes admit dominated splitting. Discrete Contin. Dyn. Syst., 27(15), 205–216 (2010)zbMATHMathSciNetGoogle Scholar
  20. [20]
    Lee, M.: Volume preserving diffeomorphisms with weak and limit weak shadowing. Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 20(3), 319–325 (2013)zbMATHMathSciNetGoogle Scholar
  21. [21]
    Lee, M., Wen, X.: Diffeomorphisms with C 1-stably average shadowing. Acta Math. Sin., Engl. Ser., 29(1), 85–92 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  22. [22]
    Moser, J.: On the volume elements on a manifold. Trans. Amer. Math. Soc., 120, 286–294 (1965)CrossRefzbMATHMathSciNetGoogle Scholar
  23. [23]
    Pilyugin, S. Yu.: Shadowing in Dynamical Systems. Lecture Notes in Math., 1706, Springer-Verlag, Berlin, 1999zbMATHGoogle Scholar
  24. [24]
    Pilyugin, S. Yu., Sakai, K., Tarakanov, O. A.: Transversality properties and C 1-open sets of diffeomorphisms with weak shadowing. Discrete Contin. Dyn. Syst., 16, 871–882 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  25. [25]
    Pugh, C., Robinson, C.: The C 1 closing lemma, including hamiltonians. Ergodic Theory Dynam. Systems, 3(2), 261–313 (1983)CrossRefzbMATHMathSciNetGoogle Scholar
  26. [26]
    Pujals, E.: Some simple questions related to the Cr stability conjecture. Nonlinearity, 21(11), 233–237 (2008)CrossRefMathSciNetGoogle Scholar
  27. [27]
    Rodriguez-Hertz, F., Rodriguez-Hertz, M. A., Tahzibi, A., et al.: Creation of blenders in the conservative setting. Nonlinearity, 23(2), 211–223 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  28. [28]
    Rodriguez-Hertz, F., Rodriguez-Hertz, M. A., Tahzibi, A., et al.: New criteria for ergodicity and nonuniform hyperbolicity. Duke Math. J., 160(3), 599–629 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  29. [29]
    Rodriguez-Hertz, M. A.: Genericity of nonuniform hyperbolicity in dimension 3. J. Mod. Dyn., 6(1), 121–138 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  30. [30]
    Sakai, K.: C 1-stably shadowable chain components. Ergodic Theory Dynam. Systems, 28(3), 987–1029 (2008)zbMATHMathSciNetGoogle Scholar
  31. [31]
    Sakai, K.: Diffeomorphisms with weak shadowing. Fund. Math., 168(1), 57–75 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  32. [32]
    Sakai, K.: Diffeomorphisms with the average-shadowing property on two-dimensional closed manifolds. Rocky Mountain J. Math., 30(3), 1129–1137 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  33. [33]
    Vivier, T.: Projective hyperbolicity and fixed points. Ergodic Theory Dynam. Systems, 26(3), 923–936 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  34. [34]
    Yang, D.: Stably weakly shadowing transitive sets and dominated splittings. Proc. Amer. Math. Soc., 139(8), 2747–2751 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  35. [35]
    Zhu, Y.-J., Zhang, J.-L., He, L.-F.: Shadowing and inverse shadowing for C 1 endomorphisms. Acta Math. Sin., Engl. Ser., 22(5), 1321–1328 (2006)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Institute of Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Chinese Mathematical Society and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Rua Marquês d’Ávila e BolamaUniversidade da Beira InteriorCovilhãPortugal
  2. 2.Department of MathematicsMokwon UniversityDaejeonRepublic of Korea

Personalised recommendations