Acta Mathematica Sinica, English Series

, Volume 30, Issue 5, pp 861–871 | Cite as

Instability of standing wave for the Klein-Gordon-Hartree equation

  • Xiao Guang Li
  • Jian Zhang
  • Yong Hong Wu


The instability property of the standing wave u ω (t, x) = eiωt φ(x) for the Klein-Gordon-Hartree equation
$$\frac{{\partial ^2 u}} {{\partial t^2 }} - \Delta u + u - \left( {\left| x \right|^{ - \gamma } *\left| u \right|^2 } \right)u = 0, x \in \mathbb{R}^N , 0 < \gamma < \min \left\{ {N,4} \right\}$$
is investigated. For the case N ≥ 3 and \(\omega ^2 < \tfrac{2} {{N + 4 - \gamma }}\), it is shown that the standing wave eiωt φ(X) is strongly unstable by blow-up in finite time.


Klein-Gordon-Hartree equation standing waves strong instability 

MR(2010) Subject Classification

35L70 35B35 35A15 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Ackermann, N.: On a periodic Schrödinger equation with nonlocal superlinear part. Math. Z., 248, 423–443 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  2. [2]
    Berestycki, H., Cazenave, T.: Instabilite des etats stationnaires dans les equations de Schrödinger et de Klein-Gordon non linearires. C. R. Acad. Sci. Paris, Seire I, 293, 489–492 (1981)zbMATHMathSciNetGoogle Scholar
  3. [3]
    Brezis, H., Leib, E. H.: Minimum action solutions of some vector field equations. Comm. Math. Phys., 96, 97–113 (1984)CrossRefzbMATHMathSciNetGoogle Scholar
  4. [4]
    Cazenave, T., Lions, P. L.: Orbital stability of standing waves for some nonlinear Schrödinger equations. Comm. Math. Phys., 85, 549–561 (1982)CrossRefzbMATHMathSciNetGoogle Scholar
  5. [5]
    Grillakis, M., Shatah, J., Strauss, W.: Stability theory of solitary waves in the presence of symmetry, I. J. Funct. Anal., 74, 160–197 (1987)CrossRefzbMATHMathSciNetGoogle Scholar
  6. [6]
    Jeanjean, L., Le Coz, S.: Instability for standing waves of nonlinear Klein-Gordon equations via mountainpass arguments. Trans. Amer. Math. Soc., 361, 5401–5416 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  7. [7]
    Lieb, E. H.: Existence and uniqueness of the minimizing solution of Choquard’s nonlinear equation. Studies in Appl. Math., 57, 93–105 (1976/77)MathSciNetGoogle Scholar
  8. [8]
    Lieb, E. H.: On the lowest eigenvalue of Laplacian for intersection of two domains. Invent. Math., 74, 441–448 (1983)CrossRefzbMATHMathSciNetGoogle Scholar
  9. [9]
    Lions, P. L.: The Choquard equation and related questions. Nonl. Anal. T. M. A., 4, 1073–1079 (1980)CrossRefGoogle Scholar
  10. [10]
    Liu, Y.: Blow up and instability of solitary-wave solutions to a generalized Kadomtsev-Petviashvili equation. Trans. Amer. Math. Soc., 353, 191–208 (2000)CrossRefGoogle Scholar
  11. [11]
    Liu, Y., Ohta, M., Todorova, G.: Strong instability of standing waves for nonlinear Klein-Gordon equations and solitary waves for generalized Boussinesq equations. Ann. Inst. Henri Poincaré Analyse Nonlinéaire, 24, 539–548 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  12. [12]
    Lopes, O.: Radial symmetry of minimizers for some translation and rotation invariant functionals. J. Diff. Eq., 124, 378–388 (1996)CrossRefzbMATHMathSciNetGoogle Scholar
  13. [13]
    Menzala, G. P.: On regular solutions of a nonlinear equation of Choquard’s type. Proc. Roy. Soc. Edinburgh Sect. A, 86, 291–301 (1980)CrossRefzbMATHMathSciNetGoogle Scholar
  14. [14]
    Menzala, G. P., Strauss, W. A.: On a wave equation with a cubic convolution. J. Diff. Eq., 43, 93–105 (1982)CrossRefzbMATHMathSciNetGoogle Scholar
  15. [15]
    Menzala, G. P.: On a Semilinear wave equation; The Cauchy problem and the asymptotic behavior of solutions. J. Math. Anal. Appl., 93, 385–396 (1983)CrossRefzbMATHMathSciNetGoogle Scholar
  16. [16]
    Miao, C., Zheng, J.: Energy scattering for the Klein-Gordon-Hartree equation. arXiv:math/0612028v5Google Scholar
  17. [17]
    Miao, C., Zhang, J.: On global solution to the Klein-Gordon-Hartree equation below energy space. J. Diff. Eq., 250, 3418–3447 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  18. [18]
    Morawetz, C., Strauss, W. A.: Decay and scattering of solutions of a nonlinear relativistic wave equation. Comm. Pure Appl. Math., 25, 1–31 (1972)CrossRefzbMATHMathSciNetGoogle Scholar
  19. [19]
    Nakanishi, K., Schlag, W.: Global dynamics above the ground state for the nonlinear Klein-Gordon equation without a radial assumption. Arch. Rat. Mech. Anal., 203, 809–851 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  20. [20]
    Ohta, M., Todorova, G.: Strong instability of standing waves for nonlinear Klein-Gordon equations. Discrete Contin. Dyn. Syst., 12, 315–322 (2005)zbMATHMathSciNetGoogle Scholar
  21. [21]
    Ohta, M., Todorova, G.: Strong instability of standing waves for nonlinear Klein-Gordon equation and Klein-Gordon-Zakharov system. SIAM J. Math. Anal., 38, 1912–1931 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  22. [22]
    Pecher, H.: Low energy scattering for nonlinear Klein-Gordon equations. J. Funct. Anal., 63, 101–122 (1985)CrossRefzbMATHMathSciNetGoogle Scholar
  23. [23]
    Stein, E. M.: Singular Integral and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, 1970Google Scholar
  24. [24]
    Shatah, J.: Stable standing waves of nonlinear Klein-Gordon equations. Comm. Math. Phys., 91, 313–327 (1983)CrossRefzbMATHMathSciNetGoogle Scholar
  25. [25]
    Shatah, J.: Unstable ground state of nonlinear Klein-Gordon equations. Trans. Amer. Math. Soc, 290, 701–710 (1985)CrossRefzbMATHMathSciNetGoogle Scholar
  26. [26]
    Shatah, J.: Strauss, W.: Instability of nonlinear bound states. Comm. Math. Phys., 100, 173–190 (1985)CrossRefzbMATHMathSciNetGoogle Scholar
  27. [27]
    Zhang, J.: Sharp conditions of global existence for nonlinear Schrödinger and Klein-Gordon equations. Nonl. Anal. T. M. A., 48, 191–207 (2002)CrossRefzbMATHGoogle Scholar
  28. [28]
    Zhang, J.: Cross-constrained variational problem and nonlinear Schrödinger equations. In: Proc. Inter. Conf. on Foundations of Computational Mathematics in honor of Professor S. Smales 70th Birthday, Hong Kong, 2001Google Scholar

Copyright information

© Institute of Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Chinese Mathematical Society and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Visual Computing and Virtual Reality Key Laboratory of Sichuan ProvinceSichuan Normal UniversityChengduP. R. China
  2. 2.College of Mathematics and Software ScienceSichuan Normal UniversityChengduP. R. China
  3. 3.Department of Mathematics and StatisticsCurtin University of TechnologyPerthAustralia

Personalised recommendations