Acta Mathematica Sinica, English Series

, Volume 29, Issue 3, pp 449–460 | Cite as

Weighted inequalities for fractional type operators with some homogeneous kernels

  • María Silvina RiverosEmail author
  • Marta Urciuolo


In this paper, we study integral operators of the form
$$T_\alpha f(x) = \int_{\mathbb{R}^n } {\left| {x - A_1 y} \right|^{ - \alpha _1 } \cdots \left| {x - A_m y} \right|^{ - \alpha _m } f(y)dy,}$$
, where A i are certain invertible matrices, α i > 0, 1 ≤ im, α 1 + … + α m = nα, 0 ≤ α < n. For \(\tfrac{1} {q} = \tfrac{1} {p} - \tfrac{\alpha } {n}\), we obtain the L p (ℝ n , w p ) − L q (ℝ n ,w q ) boundedness for weights w in A(p, q) satisfying that there exists c > 0 such that w(A i x) ≤ cw(x), a.e. x ∈ ℝ n , 1 ≤ im. Moreover, we obtain the appropriate weighted BMO and weak type estimates for certain weights satisfying the above inequality. We also give a Coifman type estimate for these operators.


Fractional operators Calderón-Zygmund operators BMO Muckenhoupt weights 

MR(2010) Subject Classification

42B20 42B25 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

10114_2013_1639_MOESM1_ESM.tex (37 kb)
Supplementary material, approximately 36.6 KB.


  1. [1]
    Ricci, F., Sjögren, P.: Two parameter maximal functions in the Heisenberg group. Math. Z., 199(4), 565–575 (1988)MathSciNetzbMATHCrossRefGoogle Scholar
  2. [2]
    Godoy, T., Urciuolo, M.: About the L p boundedness of some integral operators. Revista de la UMA, 38, 192–195 (1993)MathSciNetzbMATHGoogle Scholar
  3. [3]
    Riveros, M. S., Urciuolo, M.: Weighted inequalities for integral operators with some homogeneous kernels. Czech. Math. J., 55(2), 423–432 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  4. [4]
    John, F., Nirenberg, L.: On functions of bounded mean oscilation. Comm. Pure Appl. Math., 14, 415–426 (1961)MathSciNetzbMATHCrossRefGoogle Scholar
  5. [5]
    Rocha, P., Urciuolo, M.: On the H p-L q boundedness of some fractional integral operators. Czech. Math. J., 62(3), 625–635 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  6. [6]
    Muckenhoupt, B., Wheeden, R.: Weighted norm inequalities for fractional integrals. Trans. Amer. Math. Soc., 192, 261–274 (1974)MathSciNetzbMATHCrossRefGoogle Scholar
  7. [7]
    Grafakos, L.: Clasical Fourier Analysis, Second Edition, Springer Science Business Media, Berlin, 2008Google Scholar
  8. [8]
    García Cuerva, J., Rubio de Francia, J. L.: Weighted Norm Inequalities and Related Topics, Elseviers Science Publishers B. V., Amsterdam, The Netherlands, 1985zbMATHGoogle Scholar
  9. [9]
    Duoandikoetxea, J.: Fourier Analysis, Graduate Studies in Mathematics Volume 29, American Mathematical Society, Providence, Rhode Island, 2001Google Scholar

Copyright information

© Institute of Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Chinese Mathematical Society and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.FaMAF-UNC, CIEM-CONICET, Ciudad UniversitariaCórdobaArgentina

Personalised recommendations