Acta Mathematica Sinica, English Series

, Volume 29, Issue 7, pp 1381–1390 | Cite as

Orthogonality and quintic functional equations

  • Choonkil Park
  • Jian Lian Cui
  • Madjid Eshaghi Gordji
Article

Abstract

Using the fixed point method, we prove the Hyers-Ulam stability of an orthogonally quintic functional equation in Banach spaces and in non-Archimedean Banach spaces.

Keywords

Hyers-Ulam stability orthogonally quintic functional equation fixed point orthogonality space non-Archimedean Banach space 

MR(2010) Subject Classification

39B55 46S10 47H10 39B52 47S10 30G06 46H25 12J25 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Pinsker, A. G.: Sur une fonctionnelle dans l’espace de Hilbert. C. R. (Dokl.) Acad. Sci. URSS, n. Ser. 20, 411–414 (1938)Google Scholar
  2. [2]
    Sundaresan, K.: Orthogonality and nonlinear functionals on Banach spaces. Proc. Amer. Math. Soc., 34, 187–190 (1972)MathSciNetMATHCrossRefGoogle Scholar
  3. [3]
    Gudder, S., Strawther, D.: Orthogonally additive and orthogonally increasing functions on vector spaces. Pacific J. Math., 58, 427–436 (1975)MathSciNetMATHCrossRefGoogle Scholar
  4. [4]
    Rätz, J.: On orthogonally additive mappings. Aequationes Math., 28, 35–49 (1985)MathSciNetMATHCrossRefGoogle Scholar
  5. [5]
    Rätz, J., Szabó, G. Y.: On orthogonally additive mappings IV. Aequationes Math., 38, 73–85 (1989)MathSciNetMATHCrossRefGoogle Scholar
  6. [6]
    Alonso, J., Benítez, C.: Orthogonality in normed linear spaces: a survey I. Main properties. Extracta Math., 3, 1–15 (1988)MathSciNetGoogle Scholar
  7. [7]
    Alonso, J., Benítez, C.: Orthogonality in normed linear spaces: a survey II. Relations between main orthogonalities. Extracta Math., 4, 121–131 (1989)MathSciNetGoogle Scholar
  8. [8]
    Birkhoff, G.: Orthogonality in linear metric spaces. Duke Math. J., 1, 169–172 (1935)MathSciNetCrossRefGoogle Scholar
  9. [9]
    Carlsson, S. O.: Orthogonality in normed linear spaces. Ark. Mat., 4, 297–318 (1962)MathSciNetMATHCrossRefGoogle Scholar
  10. [10]
    Diminnie, C. R.: A new orthogonality relation for normed linear spaces. Math. Nachr., 114, 197–203 (1983)MathSciNetMATHCrossRefGoogle Scholar
  11. [11]
    James, R. C.: Orthogonality in normed linear spaces. Duke Math. J., 12, 291–302 (1945)MathSciNetMATHCrossRefGoogle Scholar
  12. [12]
    James, R. C.: Orthogonality and linear functionals in normed linear spaces. Trans. Amer. Math. Soc., 61, 265–292 (1947)MathSciNetCrossRefGoogle Scholar
  13. [13]
    Paganoni, L., Rätz, J.: Conditional function equations and orthogonal additivity. Aequationes Math., 50, 135–142 (1995)MathSciNetMATHCrossRefGoogle Scholar
  14. [14]
    Ulam, S. M.: Problems in Modern Mathematics, Wiley, New York, 1960Google Scholar
  15. [15]
    Hyers, D. H.: On the stability of the linear functional equation. Proc. Nat. Acad. Sci. U.S.A., 27, 222–224 (1941)MathSciNetCrossRefGoogle Scholar
  16. [16]
    Rassias, Th. M.: On the stability of the linear mapping in Banach spaces. Proc. Amer. Math. Soc., 72, 297–300 (1978)MathSciNetMATHCrossRefGoogle Scholar
  17. [17]
    Czerwik, S.: Stability of Functional Equations of Ulam-Hyers-Rassias Type, Hadronic Press, Palm Harbor, 2003Google Scholar
  18. [18]
    Hyers, D. H., Isac, G., Rassias, Th. M.: Stability of Functional Equations in Several Variables, Birkhäuser, Basel, 1998MATHCrossRefGoogle Scholar
  19. [19]
    Jung, S.: Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis, Hadronic Press, Palm Harbor, 2001MATHGoogle Scholar
  20. [20]
    Rassias, Th. M.: Functional Equations, Inequalities and Applications, Kluwer Academic Publishers, Dordrecht, Boston and London, 2003MATHCrossRefGoogle Scholar
  21. [21]
    Ger, R., Sikorska, J.: Stability of the orthogonal additivity. Bull. Polish Acad. Sci. Math., 43, 143–151 (1995)MathSciNetMATHGoogle Scholar
  22. [22]
    Skof, F.: Proprietà locali e approssimazione di operatori. Rend. Sem. Mat. Fis. Milano, 53, 113–129 (1983)MathSciNetMATHCrossRefGoogle Scholar
  23. [23]
    Cholewa, P. W.: Remarks on the stability of functional equations. Aequationes Math., 27, 76–86 (1984)MathSciNetMATHCrossRefGoogle Scholar
  24. [24]
    Czerwik, S.: On the stability of the quadratic mapping in normed spaces. Abh. Math. Sem. Univ. Hamburg, 62, 59–64 (1992)MathSciNetMATHCrossRefGoogle Scholar
  25. [25]
    Czerwik, S.: Functional Equations and Inequalities in Several Variables, World Scientific Publishing Company, Singapore, 2002MATHCrossRefGoogle Scholar
  26. [26]
    Park, C., Park, J.: Generalized Hyers-Ulam stability of an Euler-Lagrange type additive mapping. J. Difference Equat. Appl., 12, 1277–1288 (2006)MATHCrossRefGoogle Scholar
  27. [27]
    Rassias, Th. M.: On the stability of the quadratic functional equation and its applications. Studia Univ. Babeş-Bolyai Math., 43, 89–124 (1998)MATHGoogle Scholar
  28. [28]
    Rassias, Th. M.: The problem of S.M. Ulam for approximately multiplicative mappings. J. Math. Anal. Appl., 246, 352–378 (2000)MathSciNetMATHCrossRefGoogle Scholar
  29. [29]
    Rassias, Th. M.: On the stability of functional equations in Banach spaces. J. Math. Anal. Appl., 251, 264–284 (2000)MathSciNetMATHCrossRefGoogle Scholar
  30. [30]
    Vajzović, F.: Über das Funktional H mit der Eigenschaft: (x, y) = 0 ⇒ H (x+y)+H (x−y) = 2H (x)+2H (y). Glasnik Mat. Ser. III, 2(22), 73–81 (1967)MathSciNetGoogle Scholar
  31. [31]
    Drljević, F.: On a functional which is quadratic on A-orthogonal vectors. Publ. Inst. Math. (Beograd), 54, 63–71 (1986)Google Scholar
  32. [32]
    Fochi, M.: Functional equations in A-orthogonal vectors. Aequationes Math., 38, 28–40 (1989)MathSciNetMATHCrossRefGoogle Scholar
  33. [33]
    Szabó, Gy.: Sesquilinear-orthogonally quadratic mappings. Aequationes Math., 40, 190–200 (1990)MathSciNetMATHCrossRefGoogle Scholar
  34. [34]
    Hensel, K.: Ubereine news Begrundung der Theorie der algebraischen Zahlen. Jahresber. Deutsch. Math. Verein, 6, 83–88 (1897)Google Scholar
  35. [35]
    Deses, D.: On the representation of non-Archimedean objects. Topology Appl., 153, 774–785 (2005)MathSciNetMATHCrossRefGoogle Scholar
  36. [36]
    Katsaras, A. K., Beoyiannis, A.: Tensor products of non-Archimedean weighted spaces of continuous functions. Georgian Math. J., 6, 33–44 (1999)MathSciNetMATHCrossRefGoogle Scholar
  37. [37]
    Khrennikov, A.: Non-Archimedean Analysis: Quantum Paradoxes, Dynamical Systems and Biological Models, Mathematics and Its Applications, 427, Kluwer Academic Publishers, Dordrecht, 1997MATHCrossRefGoogle Scholar
  38. [38]
    Nyikos, P. J.: On some non-Archimedean spaces of Alexandrof and Urysohn. Topology Appl., 91, 1–23 (1999)MathSciNetMATHCrossRefGoogle Scholar
  39. [39]
    Gordji, M. E., Khodaei, H., Khodabakhsh, R.: On approximate n-ary derivations. Int. J. Geom. Methods Mod. Phys., 8(3), 485–500 (2011)MathSciNetMATHCrossRefGoogle Scholar
  40. [40]
    Gordji, M. E., Abbaszadeh, S., Park, C.: On the stability of generalized mixed type quadratic and quartic functional equation in quasi-Banach spaces. J. Ineq. Appl., 2009, Article ID 153084, 26 pages (2009)Google Scholar
  41. [41]
    Gordji, M. E., Alizadeh, Z.: Stability and superstability of ring homomorphisms on non-Archimedean Banach algebras. Abs. Appl. Anal., 2011, Article ID 123656, 10 pages (2011)Google Scholar
  42. [42]
    Gordji, M. E.: Nearly ring homomorphisms and nearly ring derivations on non-Archimedean Banach algebras. Abs. Appl. Anal., 2010, Article ID 393247, 12 pages (2010)Google Scholar
  43. [43]
    Gordji, M. E.: Stability of a functional equation deriving from quartic and additive functions. Bull. Korean Math. Soc., 47(3), 491–502 (2010)MathSciNetMATHCrossRefGoogle Scholar
  44. [44]
    Ebadian, A., Ghobadipour, N., Gordji, M. E.: A fixed point method for perturbation of bimultipliers and Jordan bimultipliers in C*-ternary algebras. J. Math. Phys., 51, 103508, 10 pages (2010)MathSciNetCrossRefGoogle Scholar
  45. [45]
    Cădariu, L., Radu, V.: Fixed points and the stability of Jensen’s functional equation. J. Inequal. Pure Appl. Math., 4(1), Art. ID 4 (2003)Google Scholar
  46. [46]
    Diaz, J., Margolis, B.: A fixed point theorem of the alternative for contractions on a generalized complete metric space. Bull. Amer. Math. Soc., 74, 305–309 (1968)MathSciNetMATHCrossRefGoogle Scholar
  47. [47]
    Isac, G., Rassias, Th. M.: Stability of ψ-additive mappings: Appications to nonlinear analysis. Internat. J. Math. Math. Sci., 19, 219–228 (1996)MathSciNetMATHCrossRefGoogle Scholar
  48. [48]
    Cądariu, L., Radu, V.: On the stability of the Cauchy functional equation: A fixed point approach. Grazer Math. Ber., 346, 43–52 (2004)MATHGoogle Scholar
  49. [49]
    Cădariu, L., Radu, V.: Fixed point methods for the generalized stability of functional equations in a single variable. Fixed Point Theory and Applications, 2008, Art. ID 749392 (2008)Google Scholar
  50. [50]
    Park, C.: Fixed points and Hyers-Ulam-Rassias stability of Cauchy-Jensen functional equations in Banach algebras. Fixed Point Theory and Applications, 2007, Art. ID 50175 (2007)Google Scholar
  51. [51]
    Park, C.: Generalized Hyers-Ulam-Rassias stability of quadratic functional equations: A fixed point approach. Fixed Point Theory and Applications, 2008, Art. ID 493751 (2008)Google Scholar
  52. [52]
    Radu, V.: The fixed point alternative and the stability of functional equations. Fixed Point Theory, 4, 91–96 (2003)MathSciNetMATHGoogle Scholar
  53. [53]
    Mihetchy functional equation in random normed spaces. J. Math. Anal. Appl., 343, 567–572 (2008)Google Scholar

Copyright information

© Institute of Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Chinese Mathematical Society and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Choonkil Park
    • 1
  • Jian Lian Cui
    • 2
  • Madjid Eshaghi Gordji
    • 3
  1. 1.Department of Mathematics, Research Institute for Natural SciencesHanyang UniversitySeoulSouth Korea
  2. 2.Department of Mathematical SciencesTsinghua UniversityBeijingP. R. China
  3. 3.Department of MathematicsSemnan UniversitySemnanIran

Personalised recommendations