Advertisement

Acta Mathematica Sinica, English Series

, Volume 29, Issue 1, pp 75–84 | Cite as

Characterizing R-duality in Banach spaces

  • Ole Christensen
  • Xiang Chun Xiao
  • Yu Can Zhu
Article

Abstract

R-duals of certain sequences in Hilbert spaces were introduced by Casazza, Kutyniok and Lammers in 2004 and later generalized to Banach spaces by Xiao and Zhu. In this paper we provide some characterizations of R-dual sequences in Banach spaces.

Keywords

R-duals p-frames p-Riesz bases duality 

MR(2000) Subject Classification

42C15 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Casazza, P. G., Kutyniok, G., Lammers, M. C.: Duality principles in frame theory. J. Fourier Anal. Appl., 10, 383–408 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  2. [2]
    Christensen, O., Kim, H. O., Kim, R. Y.: On the duality principle by Casazza, Kutyniok, and Lammers. J. Fourier Anal. Appl., 17, 640–655 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  3. [3]
    Xiao, X. M., Zhu, Y. C.: Duality principles of frames in Banach spaces. Acta Math. Sci. Ser. A Chin. Ed., 29, 94–102 (2009)MathSciNetzbMATHGoogle Scholar
  4. [4]
    Christensen, O., Stoeva, D. T.: P-frames in separable Banach spaces. Adv. Comput. Math., 18, 117–126 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  5. [5]
    Zhu, Y. C.: q-Besselian frames in Banach spaces. Acta Mathematica Sinica, English Series, 23(9), 1707–1718 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  6. [6]
    Young, R. M.: An Introduction to Nonharmonic Fourier Series, Academic Press, New York, 1980zbMATHGoogle Scholar
  7. [7]
    Taylor, A. E., Lay, D. C.: Introduction to Functional Analysis, John Wiley and Sons, New York, 1980zbMATHGoogle Scholar

Copyright information

© Institute of Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Chinese Mathematical Society and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Ole Christensen
    • 1
  • Xiang Chun Xiao
    • 2
  • Yu Can Zhu
    • 2
  1. 1.Department of MathematicsTechnical University of DenmarkLyngbyDenmark
  2. 2.Department of MathematicsFuzhou UniversityFuzhouP. R. China

Personalised recommendations