Acta Mathematica Sinica, English Series

, Volume 28, Issue 7, pp 1307–1328 | Cite as

Continuous embeddings of Besov-Morrey function spaces

Article

Abstract

We study embeddings of spaces of Besov-Morrey type, Open image in new window , and obtain necessary and sufficient conditions for this. Moreover, we can also characterise the special weighted situation Open image in new window for a Muckenhoupt \(\mathcal{A}_\infty\) weight w, with w α (x) = |x| α , α > −d, as a typical example.

Keywords

Weighted Besov spaces Besov-Morrey spaces continuous embeddings 

MR(2000) Subject Classification

46E35 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

10114_2012_1119_MOESM1_ESM.tex (75 kb)
Supplementary material, approximately 75 KB.

References

  1. [1]
    Edmunds, D. E., Triebel, H.: Function Spaces, Entropy Numbers, Differential Operators, Cambridge Univ. Press, Cambridge, 1996MATHCrossRefGoogle Scholar
  2. [2]
    Haroske, D., Triebel, H.: Entropy numbers in weighted function spaces and eigenvalue distribution of some degenerate pseudodifferential operators I. Math. Nachr., 167, 131–156 (1994)MathSciNetMATHCrossRefGoogle Scholar
  3. [3]
    Kühn, Th., Leopold, H.-G., Sickel, W., et al.: Entropy numbers of embeddings of weighted Besov spaces. Constr. Approx., 23, 61–77 (2006)MathSciNetMATHCrossRefGoogle Scholar
  4. [4]
    Kühn, Th., Leopold, H.-G., Sickel, W., et al.: Entropy numbers of embeddings of weighted Besov spaces II. Proc. Edinburgh Math. Soc. (2), 49, 331–359 (2006)MATHCrossRefGoogle Scholar
  5. [5]
    Kühn, Th., Leopold, H.-G., Sickel, W., et al.: Entropy numbers of embeddings of weighted Besov spaces III. Weights of logarithmic type. Math. Z., 255, 1–15 (2007)MathSciNetMATHCrossRefGoogle Scholar
  6. [6]
    Haroske, D. D., Piotrowska, I.: Atomic decompositions of function spaces with Muckenhoupt weights, and some relations to fractal analysis. Math. Nachr., 281, 1476–1494 (2008)MathSciNetMATHCrossRefGoogle Scholar
  7. [7]
    Haroske, D. D., Skrzypczak, L.: Entropy and approximation numbers of embeddings of function spaces with Muckenhoupt weights, I. Rev. Mat. Complut., 21(1), 135–177 (2008)MathSciNetMATHGoogle Scholar
  8. [8]
    Haroske, D. D., Skrzypczak, L.: Entropy and approximation numbers of embeddings of function spaces with Muckenhoupt weights, II. General weights. Ann. Acad. Sci. Fenn. Math., 36, 111–138 (2011)MathSciNetMATHCrossRefGoogle Scholar
  9. [9]
    Haroske, D. D., Skrzypczak, L.: Entropy numbers of embeddings of function spaces with Muckenhoupt weights, III. Some limiting cases. J. Funct. Spaces Appl., 9(2), 129–178 (2011)MathSciNetMATHCrossRefGoogle Scholar
  10. [10]
    Haroske, D. D., Skrzypczak, L.: Spectral theory of some degenerate elliptic operators with local singularities. J. Math. Anal. Appl., 371(1), 282–299 (2010)MathSciNetMATHCrossRefGoogle Scholar
  11. [11]
    Bui, H.-Q.: Weighted Besov and Triebel spaces: Interpolation by the real method. Hiroshima Math. J., 12(3), 581–605 (1982)MathSciNetMATHGoogle Scholar
  12. [12]
    Bui, H.-Q.: Characterizations of weighted Besov and Triebel-Lizorkin spaces via temperatures. J. Funct. Anal., 55(1), 39–62 (1984)MathSciNetCrossRefGoogle Scholar
  13. [13]
    Bui, H.-Q., Paluszyński, M., Taibleson, M. H.: A maximal function characterization of weighted Besov-Lipschitz and Triebel-Lizorkin spaces. Studia Math., 119(3), 219–246 (1996)MathSciNetMATHGoogle Scholar
  14. [14]
    Bui, H.-Q., Paluszyński, M., Taibleson, M. H.: Characterization of the Besov-Lipschitz and Triebel-Lizorkin spaces. The case q < 1. J. Fourier Anal. Appl., 3(Spec. Iss.), 837–846 (1997)MathSciNetMATHCrossRefGoogle Scholar
  15. [15]
    Roudenko, S.: Matrix-weighted Besov spaces. Trans. Amer. Math. Soc., 355, 273–314 (2002)MathSciNetCrossRefGoogle Scholar
  16. [16]
    Bownik, M.: Atomic and molecular decompositions of anisotropic Besov spaces. Math. Z., 250(3), 539–571 (2005)MathSciNetMATHCrossRefGoogle Scholar
  17. [17]
    Bownik, M., Ho, K. P.: Atomic and molecular decompositions of anisotropic Triebel-Lizorkin spaces. Trans. Amer. Math. Soc., 358(4), 1469–1510 (2006)MathSciNetMATHCrossRefGoogle Scholar
  18. [18]
    Morrey, C. B., Jr.: On the solutions of quasi-linear elliptic partial differential equations. Trans. Amer. Math. Soc., 43(1), 126–166 (1938)MathSciNetCrossRefGoogle Scholar
  19. [19]
    Peetre, J.: On the theory of L p,λ spaces. J. Funct. Anal., 4, 71–87 (1969)MathSciNetMATHCrossRefGoogle Scholar
  20. [20]
    Kozono, H., Yamazaki, M.: Semilinear heat equations and the Navier-Stokes equation with distributions in new function spaces as initial data. Comm. Partial Differential Equations, 19(5–6), 959–1014 (1994)MathSciNetMATHCrossRefGoogle Scholar
  21. [21]
    Mazzucato, A. L.: Besov-Morrey spaces: function space theory and applications to non-linear PDE. Trans. Amer. Math. Soc., 355(4), 1297–1364 (electronic) (2003)MathSciNetMATHCrossRefGoogle Scholar
  22. [22]
    Sawano, Y.: Wavelet characterizations of Besov-Morrey and Triebel-Lizorkin-Morrey spaces. Funct. Approx. Comment. Math., 38, 93–107 (2008)MathSciNetMATHCrossRefGoogle Scholar
  23. [23]
    Sawano, Y.: A note on Besov-Morrey spaces and Triebel-Lizorkin-Morrey spaces. Acta Mathematica Sinica, English Series, 25(8), 1223–1242 (2009)MathSciNetMATHCrossRefGoogle Scholar
  24. [24]
    Sawano, Y.: Brezis-Galloüet-Wainger type inequality for Besov-Morrey spaces. Studia Math., 196, 91–101 (2010)MathSciNetMATHCrossRefGoogle Scholar
  25. [25]
    Sawano, Y., Tanaka, H.: Decompositions of Besov-Morrey spaces and Triebel-Lizorkin-Morrey spaces. Math. Z., 257(4), 871–905 (2007)MathSciNetMATHCrossRefGoogle Scholar
  26. [26]
    Sawano, Y., Tanaka, H.: Besov-Morrey spaces and Triebel-Lizorkin-Morrey spaces for non-doubling measures. Math. Nachr., 282(12), 1788–1810 (2009)MathSciNetMATHCrossRefGoogle Scholar
  27. [27]
    Tang, L., Xu, J.: Some properties of Morrey type Besov-Triebel spaces. Math. Nachr., 278(7–8), 904–917 (2005)MathSciNetMATHCrossRefGoogle Scholar
  28. [28]
    Yuan, W., Sickel, W., Yang, D.: Morrey and Campanato meet Besov, Lizorkin and Triebel, Lecture Notes in Math. 2005, Springer, Berlin, 2010MATHCrossRefGoogle Scholar
  29. [29]
    Sawano, Y., Sugano, S., Tanaka, H.: Identification of the image of Morrey spaces by the fractional integral operators. Proc. A. Razmadze Math. Inst., 149, 87–93 (2009)MathSciNetMATHGoogle Scholar
  30. [30]
    García-Cuerva, J., Rubio de Francia, J. L.: Weighted norm inequalities and related topics. In: North-Holland Mathematics Studies, Vol. 116, North-Holland, Amsterdam, 1985MATHCrossRefGoogle Scholar
  31. [31]
    Stein, E. M.: Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals. In: Princeton Mathematical Series, Vol. 43, Princeton University Press, Princeton, 1993MATHGoogle Scholar
  32. [32]
    Torchinsky, A.: Real-variable methods in harmonic analysis. In: Pure and Applied Mathematics, Vol. 123, Academic Press Inc., Orlando, FL, 1986MATHGoogle Scholar
  33. [33]
    Triebel, H.: Theory of Function Spaces, Birkhäuser, Basel, 1983CrossRefGoogle Scholar
  34. [34]
    Triebel, H.: Theory of Function Spaces II, Birkhäuser, Basel, 1992MATHCrossRefGoogle Scholar
  35. [35]
    Triebel, H.: Theory of Function Spaces III, Birkhäuser, Basel, 2006MATHGoogle Scholar
  36. [36]
    Rychkov, V. S.: Littlewood-Paley theory and function spaces with A ploc weights. Math. Nachr., 224, 145–180 (2001)MathSciNetMATHCrossRefGoogle Scholar
  37. [37]
    Izuki, M., Sawano, Y.: Wavelet bases in the weighted Besov and Triebel-Lizorkin spaces with ploc weights. J. Approx. Theory, 161(2), 656–673 (2009)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Institute of Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Chinese Mathematical Society and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Mathematical InstituteFriedrich-Schiller-University JenaJenaGermany
  2. 2.Faculty of Mathematics and Computer ScienceAdam Mickiewicz UniversityPoznańPoland

Personalised recommendations