Advertisement

Acta Mathematica Sinica, English Series

, Volume 27, Issue 2, pp 339–368 | Cite as

Effective Maxwell equations from time-dependent density functional theory

  • E Weinan
  • Jianfeng Lu
  • Xu Yang
Article

Abstract

The behavior of interacting electrons in a perfect crystal under macroscopic external electric and magnetic fields is studied. Effective Maxwell equations for the macroscopic electric and magnetic fields are derived starting from time-dependent density functional theory. Effective permittivity and permeability coefficients are obtained.

Keywords

Time-dependent density functional theory Maxwell equations effective permittivity electromagnetic fields 

MR(2000) Subject Classification

81Q05 35Q61 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    E, W., Lu, J., Yang, X.: Asymptotic analysis of the quantum dynamics in crystals: the Bloch-Wigner transform and Bloch dynamics. Acta Math. Appl. Sin. Engl. Ser., acceptedGoogle Scholar
  2. [2]
    Hohenberg, P., Kohn, W.: Inhomogeneous electron gas. Phys. Rev., 136, B864–B871 (1964)MathSciNetCrossRefGoogle Scholar
  3. [3]
    Kohn, W., Sham, L.: Self-consistent equations including exchange and correlation effects. Phys. Rev., 140, A1133–A1138 (1965)MathSciNetCrossRefGoogle Scholar
  4. [4]
    Runge, E., Gross, E. K. U.: Density-functional theory for time-dependent systems. Phys. Rev. Lett., 52, 997–1000 (1984)CrossRefGoogle Scholar
  5. [5]
    Anantharaman, A., Cancès, E.: Existence of minimizers for Kohn-Sham models in quantum chemistry. Ann. Inst. H. Poincaré Anal. Non Linéaire, 26, 2425–2455 (2009)zbMATHCrossRefGoogle Scholar
  6. [6]
    Benguria, R., Brézis, H., Lieb, E. H.: The Thomas-Fermi-von Weizsäcker theory of atoms and molecules. Comm. Math. Phys., 79(2), 167–180 (1981)MathSciNetzbMATHCrossRefGoogle Scholar
  7. [7]
    Blanc, X., Le Bris, C., Lions, P.-L.: From molecular models to continuum mechanics. Arch. Ration. Mech. Anal., 164, 341–381 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  8. [8]
    Catto, I., Le Bris, C., Lions, P.-L.: Mathematical Theory of Thermodynamic Limits: Thomas-Fermi Type Models, Clarendon Press, Oxford, 1998zbMATHGoogle Scholar
  9. [9]
    Lieb, E. H., Simon, B.: The Thomas-Fermi theory of atoms, molecules and solids. Adv. Math., 23, 22–116 (1977)MathSciNetCrossRefGoogle Scholar
  10. [10]
    Lieb, E. H.: Thomas-Fermi and related theories of atoms and molecules. Rev. Mod. Phys., 53, 603–641 (1981)MathSciNetzbMATHCrossRefGoogle Scholar
  11. [11]
    Lieb, E. H.: Density functional for Coulomb systems. Int J. Quantum Chem., 24, 243–277 (1983)CrossRefGoogle Scholar
  12. [12]
    Prodan, E., Nordlander, P.: On the Kohn-Sham equations with periodic background potentials. J. Stat. Phys., 111, 967–992 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  13. [13]
    E, W., Lu, J.: The electronic structure of smoothly deformed crystals: Cauchy-Born rule for nonlinear tight-binding model. Comm. Pure Appl. Math., 63, 1432–1468 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  14. [14]
    E, W., Lu, J.: The Kohn-Sham equation for deformed crystals. 2010, preprintGoogle Scholar
  15. [15]
    E, W., Lu, J.: The electronic structure of smoothly deformed crystals: Wannier functions and the Cauchy-Born rule. Arch. Ration. Mech. Anal., acceptedGoogle Scholar
  16. [16]
    E, W., Lu, J.: Cauchy-Born rule and spin density wave for the spin-polarized Thomas-Fermi-Dirc- von Weizsäcker model. 2010, preprintGoogle Scholar
  17. [17]
    Cances, E., Lewin, M.: The dielectric permittivity of crystals in the reduced Hartree-Fock approximation. Arch. Ration. Mech. Anal., 1, 139–177 (2010)MathSciNetCrossRefGoogle Scholar
  18. [18]
    Vignale, G., Kohn, W.: Current-density exchange-correlation potential for dynamics linear response theory. Phys. Rev. Lett., 77, 2037–2040 (1996)CrossRefGoogle Scholar
  19. [19]
    Vignale, G.: Center of mass and relative motion in time dependent density functional theory. Phys. Rev. Lett., 74, 3233–3236 (1995)CrossRefGoogle Scholar
  20. [20]
    Ceperley, D. M., Alder, B. J.: Ground state of the electron gas by a stochastic method. Phys. Rev. Lett., 45, 566–569 (1980)CrossRefGoogle Scholar
  21. [21]
    Zangwill, A., Soven, P.: Resonant photoemission in Barium and Cerium. Phys. Rev. Lett., 45, 204–207 (1980)CrossRefGoogle Scholar
  22. [22]
    Bertsch, G. F., Iwata, J.-I., Rubio, A., et al.: Real-space, real-time method for the dielectric function. Phys. Rev. B, 62(12), 7998–8002 (2000)CrossRefGoogle Scholar
  23. [23]
    Reed, M., Simon, B.: Methods of Modern Mathematical Physics, Vol. IV, Academic Press, New York, 1980Google Scholar

Copyright information

© Institute of Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Chinese Mathematical Society and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Department of Mathematics and Program in Applied and Computational MathematicsPrinceton UniversityPrincetonUSA
  2. 2.Beijing International Center for Mathematical Research and School of Mathematical SciencesPeking UniversityBeijingP. R. China
  3. 3.Department of Mathematics, Courant Institute of Mathematical SciencesNew York UniversityNew YorkUSA

Personalised recommendations