Acta Mathematica Sinica, English Series

, Volume 28, Issue 6, pp 1155–1168 | Cite as

Light subgraphs in the family of 1-planar graphs with high minimum degree

  • Xin ZhangEmail author
  • Gui Zhen Liu
  • Jian Liang Wu


A graph is 1-planar if it can be drawn in the plane so that each edge is crossed by at most one other edge. In this paper, it is shown that each 1-planar graph with minimum degree 7 contains a copy of K 2∨(K 1K 2) with all vertices of degree at most 12. In addition, we also prove the existence of a graph K 1∨(K 1K 2) with relatively small degree vertices in 1-planar graphs with minimum degree at least 6.


1-Planar graph lightness height discharging 

MR(2000) Subject Classification

05C10 05C75 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

10114_2011_439_MOESM1_ESM.tex (54 kb)
Supplementary material, approximately 54.2 KB.
10114_2011_439_MOESM2_ESM.eps (552 kb)
Supplementary material, approximately 551 KB.


  1. [1]
    Bondy, J. A., Murty, U. S. R.: Graph Theory with Applications, New York, North-Holland, 1976zbMATHGoogle Scholar
  2. [2]
    Ringel, G.: Ein sechsfarbenproblem auf der Kugel. Abh. Math. Sem. Hamburg. Univ., 29, 107–117 (1965)MathSciNetzbMATHCrossRefGoogle Scholar
  3. [3]
    Borodin, O. V.: A new proof of the 6 color theorem. Journal of Graph Theory, 19(4), 507–521 (1995)MathSciNetCrossRefGoogle Scholar
  4. [4]
    Borodin, O. V.: Solution of Ringel’s problems on the vertex-face coloring of plane graphs and on the coloring of 1-planar graphs (in Russian). Diskret. Analiz, 41, 12–26 (1984)MathSciNetzbMATHGoogle Scholar
  5. [5]
    Fabrici, I., Madaras, T.: The structure of 1-planar graphs. Discrete Mathematics, 307, 854–865 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  6. [6]
    Borodin, O. V., Kostochka, A. V., Raspaud, A., et al.: Acyclic colouring of 1-planar graphs. Discrete Applied Mathematics, 114, 29–41 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  7. [7]
    Albertson, M. O., Mohar, B.: Coloring vertices and faces of locally planar graphs. Graphs and Combinatorics, 22, 289–295 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  8. [8]
    Wang, W., Lih, K.-W.: Coupled choosability of plane graphs. Journal of Graph Theory, 58, 27–44 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  9. [9]
    Zhang, X., Wu, J.-L.: On edge colorings of 1-planar graphs. Information Processing Letters, 111(3), 124–128 (2011)MathSciNetCrossRefGoogle Scholar
  10. [10]
    Zhang, X., Liu, G.: On edge colorings of 1-planar graphs without chordal 5-cycles. Ars Combinatorica, acceptedGoogle Scholar
  11. [11]
    Zhang, X., Liu, G.: On edge colorings of 1-planar graphs without adjacent triangles. Information Processing Letters, doi: 10.1016/j.ipl.2011.10.021Google Scholar
  12. [12]
    Zhang, X., Liu, G., Wu, J.-L.: Edge coloring of triangle-free 1-planar graphs (in Chinese). Journal of Shandong University (Natural Science), 45(6), 15–17 (2010)MathSciNetzbMATHGoogle Scholar
  13. [13]
    Zhang, X., Liu, G., Wu, J.-L.: On the linear arboricity of 1-planar graphs. OR Transactions, 15(3), 38–44 (2011)Google Scholar
  14. [14]
    Zhang, X., Yu, Y., Liu, G.: On (p, 1)-total labelling of 1-planar graphs. Central European Journal of Mathematics, 9(6), 1424–1434 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  15. [15]
    Zhang, X., Liu, G., Wu, J.-L.: Structural properties of 1-planar graphs and an application to acyclic edge coloring (in Chinese). Scientia Sinica Mathematica, 40, 1025–1032 (2010)Google Scholar
  16. [16]
    Zhang, X., Wu, J.-L., Liu, G.: New upper bounds for the heights of some light subgraphs in 1-planar graphs with high minimum degree. Discrete Mathematics and Theoretical Computer Science, 13(3), 9–16 (2011)MathSciNetGoogle Scholar
  17. [17]
    Borodin, O. V., Dmitriev, I. G., Ivanova, A. O.: The height of a 4-cycle in triangle-free 1-planar graphs with minimum degree 5. Journal of Applied and Industrial Mathematics, 3(1), 28–31 (2009)CrossRefGoogle Scholar
  18. [18]
    Hudák, D., Madaras, T.: On local properties of 1-planar graphs with high minimum degree. Ars Mathematica Contemporanea, 4(2), 245–254 (2011)MathSciNetzbMATHGoogle Scholar
  19. [19]
    Hudák, D., Madaras, T.: On local structures of 1-planar graphs of minimum degree 5 and girth 4. Discussiones Mathematicae, Graph Theory, 29, 385–400 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  20. [20]
    Korzhik, V. P.: Minimal non-1-planar graphs. Discrete Mathematics, 308, 1319–1327 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  21. [21]
    Korzhik, V. P., Mohar, B.: Minimal obstructions for 1-immersions and hardness of 1-planarrity test. Lecture Notes in Computer Science, 5417, 2009, 302–312Google Scholar
  22. [22]
    Suzuki, Y.: Optimal 1-planar graphs which triangulate other surfaces. Discrete Mathematics, 310, 6–11 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  23. [23]
    Suzuki, Y.: Re-embeddings of maximum 1-planar graphs. SIAM J. Discrete Math., 24(4), 1527–1540 (2010)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Institute of Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Chinese Mathematical Society and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.School of MathematicsShandong UniversityJi’nanP. R. China

Personalised recommendations