Advertisement

Acta Mathematica Sinica, English Series

, Volume 26, Issue 7, pp 1255–1262 | Cite as

Solution and stability of a cubic functional equation

  • Kil Woung Jun
  • Sang Baek Lee
  • Won Gil Park
Article

Abstract

In this paper, we investigate the general solution and the stability of a cubic functional equation
$$ f(x + ny) + f(x - ny) + f(nx) = n^2 f(x + y) + n^2 f(x - y) + (n^3 - 2n^2 + 2)f(x), $$
where n ≥ 2 is an integer. Furthermore, we prove the stability by the fixed point method.

Keywords

Hyers-Ulam stability cubic functional equation alternative of fixed point 

MR(2000) Subject Classification

39B52 39B82 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Ulam, S. M.: A Collection of Mathematical Problems, Interscience Publishers, New York, 1968, p. 63Google Scholar
  2. [2]
    Hyers, D. H.: On the stability of the linear functional equation. Proc. Nat. Acad. Sci., 27, 222–224 (1941)CrossRefMathSciNetGoogle Scholar
  3. [3]
    Rassias, Th. M.: On the stability of linear mappings in Banach spaces. Proc. Amer. Math. Soc., 72, 297–300 (1978)MATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    Gǎvruta, P.: A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings. J. Math. Anal. Appl., 184, 431–436 (1994)CrossRefMathSciNetGoogle Scholar
  5. [5]
    Jun, K.-W., Kim, H.-M.: The Hyers-Ulam-Rassias stability of a cubic functional equation. J. Math. Anal. Appl., 274, 867–878 (2002)MATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    Chu, H.-Y., Kang, D.-S.: On the stability of an n-dimensional cubic functional equation. J. Math. Anal. Appl., 325, 595–607 (2007)MATHCrossRefMathSciNetGoogle Scholar
  7. [7]
    Najati, A., Park, C.: On the stability of a cubic functional equation. Acta Mathematica Sinica, English Series, 24, 1953–1964 (2008)MATHCrossRefMathSciNetGoogle Scholar
  8. [8]
    Jun, K.-W., Kim, H.-M., Chang, I.-S.: On the Hyers-Ulam stability of an Euler-Lagrange type cubic functional equation. J. Comput. Anal. Appl., 7, 21–33 (2005)MATHMathSciNetGoogle Scholar
  9. [9]
    Margolis, B., Dias, J. B.: A fixed point theorem of the alternative for contractions on a generalized complete metric space. Bull. Amer. Math. Soc., 126, 305–309 (1968)Google Scholar
  10. [10]
    Rus, I. A.: Principles and Applications of Fixed Point Theory (in Romanian), Ed. Dacia, Cluj-Napoca, 1979Google Scholar

Copyright information

© Institute of Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Chinese Mathematical Society and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Department of MathematicsChungnam National UniversityDaejeonSouth Korea
  2. 2.Department of Mathematics Education, College of EducationMokwon UniversityDaejeonSouth Korea

Personalised recommendations