Advertisement

Acta Mathematica Sinica, English Series

, Volume 26, Issue 4, pp 603–620 | Cite as

Multi-parameter Triebel-Lizorkin and Besov spaces associated with flag singular integrals

  • Yong Ding
  • Guo Zhen Lu
  • Bo Lin MaEmail author
Article

Abstract

Though the theory of one-parameter Triebel-Lizorkin and Besov spaces has been very well developed in the past decades, the multi-parameter counterpart of such a theory is still absent. The main purpose of this paper is to develop a theory of multi-parameter Triebel-Lizorkin and Besov spaces using the discrete Littlewood-Paley-Stein analysis in the setting of implicit multi-parameter structure. It is motivated by the recent work of Han and Lu in which they established a satisfactory theory of multi-parameter Littlewood-Paley-Stein analysis and Hardy spaces associated with the flag singular integral operators studied by Muller-Ricci-Stein and Nagel-Ricci-Stein. We also prove the boundedness of flag singular integral operators on Triebel-Lizorkin space and Besov space. Our methods here can be applied to develop easily the theory of multi-parameter Triebel-Lizorkin and Besov spaces in the pure product setting.

Keywords

flag singular integrals multiparameter Triebel-Lizorkin spaces discrete Calderón reproducing formulas discrete Littlewood-Paley-Stein analysis 

MR(2000) Subject Classification

42B35 42B25 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Gundy, R., Stein, E. M.: H p theory for the polydisk. Proc. Nat. Acad. Sci., 76, 1026–1029 (1979)zbMATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    Carleson, L.: A counterexample for measures bounded on H p for the bidisc. Mittag-Leffler Report No. 7, 1974Google Scholar
  3. [3]
    Fefferman, R., Stein, E. M.: singular integrals on product spaces. Adv. Math., 45, 117–143 (1982)zbMATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    Fefferman, R.: Harmonic Analysis on product spaces. Ann. of Math., 126, 109–130 (1987)CrossRefMathSciNetGoogle Scholar
  5. [5]
    Chang, S-Y. A., Fefferman, R.: Some recent developments in Fourier analysis and H p theory on product domains. Bull. Amer. Math. Soc., 12, 1–43 (1985)zbMATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    Chang, S-Y. A., Fefferman, R.: The Calderón-Zygmund decomposition on product domains. Amer. J. Math., 104, 455–468 (1982)zbMATHCrossRefMathSciNetGoogle Scholar
  7. [7]
    Chang, S-Y. A., Fefferman, R.: A continuous version of duality of H 1 with BMO on the bidisc. Ann. of Math., 112, 179–201 (1980)CrossRefMathSciNetGoogle Scholar
  8. [8]
    Journe, J. L.: Calderón-Zygmund operators on product spaces. Rev. Mat. Iberoamericana., 1, 55–92 (1985)zbMATHMathSciNetGoogle Scholar
  9. [9]
    Journe, J. L.: Two problems of Calderón-Zygmund theory on product spaces. Ann. Inst. Fourier (Grenoble), 38, 111–132 (1988)zbMATHMathSciNetGoogle Scholar
  10. [10]
    Pipher, J.: Journe’s covering lemma and its extension to higher dimensions. Duke Math. J., 53, 683–690 (1986)zbMATHCrossRefMathSciNetGoogle Scholar
  11. [11]
    Muller, D., Ricci, F., Stein, E. M.: Marcinkiewicz multipliers and multi-parameter structure on Heisenberg(−type) groups, I. Invent. Math., 119, 119–233 (1995)CrossRefMathSciNetGoogle Scholar
  12. [12]
    Nagel, A., Ricci, F., Stein, E. M.: Singular integrals with flag kernels and analysis on quadratic CR manifolds. J. Funct. Anal., 181, 29–118 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  13. [13]
    Han, Y., Lu, G.: Discrete Littlewood-Paley-Stein theory and multi-parameter Hardy spaces associated with flag singular integrals. ArXiv, 0801.1701v1 (2008)Google Scholar
  14. [14]
    Han, Y., Lu, G.: Endpoint estimates for singular integral operators and Hardy spaces associated with Zygmund dilations, Trends in Partial Differential Equations, ALM 10, High Education Press and International Press, Bejing-Boston, 2009, pp. 99–191Google Scholar
  15. [15]
    Ricci, F., Stein, E. M.: Multiparameter singular integrals and maximal functions. Ann. Inst. Fourier (Grenoble), 42, 637–670 (1992)zbMATHMathSciNetGoogle Scholar
  16. [16]
    Jessen, B., Marcinkiewicz, J., Zygmund, A.: Note on the differentiability of multiple integrals. Funda. Math., 25, 217–234 (1935)Google Scholar
  17. [17]
    Fefferman, C., Stein, E. M.: Some maximal inequalities. Amer. J. Math., 93, 107–115 (1971)zbMATHCrossRefMathSciNetGoogle Scholar
  18. [18]
    Chang, S-Y. A.: Carleson measures on the bi-disc. Ann. of Math., 109, 613–620 (1979)CrossRefMathSciNetGoogle Scholar
  19. [19]
    Coifman, R. R., Weiss, G.: Transference methods in analysis, The Conference Board of the Mathematical Sciences by the AMS, 1977Google Scholar
  20. [20]
    Frazier, M., Jawerth, B.: A discrete transform and decompositions of distribution spaces. J. Funct. Anal., 93, 34–170 (1990)zbMATHCrossRefMathSciNetGoogle Scholar
  21. [21]
    Fefferman, R., Pipher, J.: Multiparameter operators and sharp weighted inequalities. Amer. J. Math., 11, 337–369 (1997)MathSciNetGoogle Scholar
  22. [22]
    Ruan, Z.: Non-isotropic flag singular integrals on multi-parameter Hardy spaces, to appear in Taiwanese Journal of Mathematics Google Scholar
  23. [23]
    Ruan, Z.: The duality of non-isotropic multiparameter flag hardy spaces. Pan Amer. Math. J., 18(4), 77–99 (2008)zbMATHGoogle Scholar
  24. [24]
    Han, Y., Lu, G.: Some recent works on multiparameter Hardy space theory and discrete Littlewood-Paley analysis. In: Trends in Partial Differential Equations. Advanced Lecture in Mathematics, Higher Education Press-International Press, Beijing-Hong Kong, 2009Google Scholar

Copyright information

© Institute of Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Chinese Mathematical Society and Springer Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Laboratory of Mathematics and Complex Systems (BNU)Ministry of EducationBeijingP. R. China
  2. 2.Department of MathematicsWayne State UniversityDetroitUSA
  3. 3.College of Mathematics and Information EngineeringJiaxing UniversityJiaxingP. R. China
  4. 4.School of MathematicsBeijing Normal UniversityBeijingP. R. China

Personalised recommendations