Acta Mathematica Sinica, English Series

, Volume 25, Issue 3, pp 435–444 | Cite as

On the weighted elliptic problems involving multi-singular potentials and multi-critical exponents

Article

Abstract

Suppose Ω ⊂ ℝ N (N ≥ 3) is a smooth bounded domain, \( \xi _i \in \Omega , 0 < a_i < \sqrt {\bar \mu } , \bar \mu : = \left( {\frac{{N - 2}} {2}} \right)^2 ,0 \leqslant \mu _i < \left( {\sqrt {\bar \mu } - a_i } \right)^2 , a_i < b_i < a_i + 1 \) and \( p_i : = \frac{{2N}} {{N - 2(1 + a_i - b_i )}} \) are the weighted critical Hardy-Sobolev exponents, i = 1, 2,…, k, k ≥ 2. We deal with the conditions that ensure the existence of positive solutions to the multi-singular and multi-critical elliptic problem
$$ \sum\limits_{i = 1}^k {\left( { - div(|x - \xi _i |^{ - 2a_i } \nabla u) - \frac{{\mu _i u}} {{|x - \xi _i |^{2(1 + a_i )} }} - \frac{{u^{p_i - 1} }} {{|x - \xi _i |^{b_i p_i } }}} \right)} = 0 $$
with Dirichlet boundary condition, which involves the weighted Hardy inequality and the weighted Hardy-Sobolev inequality. The results depend crucially on the parameters a i , b i and μ i , i = 1, 2,…, k.

Keywords

multi-singular multi-critical weighted elliptic problem weighted Hardy-Sobolev exponent 

MR(2000) Subject Classification

35B33 35J60 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Caffarelli, L., Kohn, R., Nirenberg, L.: First order interpolation inequality with weights. Compos. Math., 53(3), 259–275 (1984)MATHMathSciNetGoogle Scholar
  2. [2]
    Catrina, F., Wang, Z.: On the Caffarelli-Kohn-Nirenberg inequalities: sharp constants, existence (and nonexistence), and symmetry of extermal functions. Comm. Pure Appl. Math., 54(1), 229–257 (2001)MATHCrossRefMathSciNetGoogle Scholar
  3. [3]
    Chou, K., Chu, C.: On the best constant for a weighted Hardy-Sobolev inequality. J. London Math. Soc., 48(1), 137–151 (1993)MATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    Cao, D., Han P.: Solutions for semilinear elliptic equations with critical exponents and Hardy potential. J. Differential Equations, 205(2), 521–537 (2004)MATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    Cao, D., Han, P.: Solutions to critical elliptic equations with multi-singular inverse square potentials. J. Differential Equations, 224(2), 332–372 (2006)MATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    Cao, D., He, X., Peng, S.: Positive solutions for some singular critical growth nonlinear elliptic equations. Nonlinear Anal., 60(3), 589–609 (2005)MATHMathSciNetGoogle Scholar
  7. [7]
    Cao, D., Peng, S.: A note on the sign-changing solutions to elliptic problems with critical Sobolev and Hardy terms. J. Differential Equations, 193(2), 424–434 (2003)MATHCrossRefMathSciNetGoogle Scholar
  8. [8]
    Chen, J.: Existence of solutions for a nonlinear PDE with an inverse square potential. J. Differential Equations, 195(2), 497–519 (2003)MATHCrossRefMathSciNetGoogle Scholar
  9. [9]
    Ekeland, I., Ghoussoub, N.: Selected new aspects of the calculus of variations in the large. Bull. Amer. Math. Soc., 39(2), 207–265 (2002)MATHCrossRefMathSciNetGoogle Scholar
  10. [10]
    Felli, V., Terracini, S.: Elliptic equations with multi-singular inverse-square potentials and critical nonlinearity. Comm. Partial Differential Equations, 31(1), 469–495 (2006)MATHCrossRefMathSciNetGoogle Scholar
  11. [11]
    Ferrero, A., Gazzola, F.: Existence of solutions for singular critical growth semilinear elliptic equations. J. Differential Equations, 177(2), 494–522 (2001)MATHCrossRefMathSciNetGoogle Scholar
  12. [12]
    Gao, W., Peng, S.: An elliptic equation with combined critical Hardy-Sobolev terms. Nonlinear Anal., 65(8), 1595–1612 (2006)MATHCrossRefMathSciNetGoogle Scholar
  13. [13]
    Jannelli, E.: The role played by space dimension in elliptic critical problems. J. Differential Equations, 156(2), 407–426 (1999)MATHCrossRefMathSciNetGoogle Scholar
  14. [14]
    Kang, D., Peng, S.: Existence of solutions for elliptic equations with critical Hardy-Sobolev exponents. Nonlinear Anal., 56(8), 1151–1164 (2004)CrossRefMathSciNetGoogle Scholar
  15. [15]
    Smets, D.: Nonlinear Schrödinger equations with Hardy potential and critical nonlinearities. Trans. Amer. Math. Soc., 357(7), 2909–2938 (2005)MATHCrossRefMathSciNetGoogle Scholar
  16. [16]
    Terracini, S.: On positive solutions to a class equations with a singular coefficient and critical exponent. Adv. Differential Equations, 1(2), 241–264 (1996)MATHMathSciNetGoogle Scholar
  17. [17]
    Garcia, J., Peral, I.: Hardy inequalities and some critical elliptic and parabolic problems. J. Differential Equations, 144(2), 441–476 (1998)MATHCrossRefMathSciNetGoogle Scholar
  18. [18]
    Ghoussoub, N., Yuan, C.: Multiple solutions for quasi-linear PDEs involving the critical Sobolev and Hardy exponents. Trans. Amer. Math. Soc., 352(12), 5703–5743 (2000)MATHCrossRefMathSciNetGoogle Scholar
  19. [19]
    Han, P.: Quasilinear elliptic problems with critical exponents and Hardy terms. Nonlinear Anal., 61(5), 735–758 (2005)MATHCrossRefMathSciNetGoogle Scholar
  20. [20]
    Kang, D.: On the quasilinear elliptic problems with critical Sobolev-Hardy exponents and Hardy terms. Nonlinear Anal., 68(7), 1973–1985 (2008)MATHCrossRefMathSciNetGoogle Scholar
  21. [21]
    Xiong, H., Shen, Y. T.: Nonlinear biharmonic equations with critical potential. Acta Mathematica Sinica, English Series, 21(6), 1285–1294 (2005)MATHCrossRefMathSciNetGoogle Scholar
  22. [22]
    Gazzola, F., Grunau, H., Mitidieri, E.: Hardy inequalities with optional constants and remainder terms. Trans. Amer. Math. Soc., 356(6), 2149–2168 (2003)CrossRefMathSciNetGoogle Scholar
  23. [23]
    Kang, D.: On the elliptic problems with critical weighted Sobolev-Hardy exponents. Nonlinear Anal., 66(5), 1037–1050 (2007)MATHCrossRefMathSciNetGoogle Scholar
  24. [24]
    Ambrosetti, A., Rabinowitz, H.: Dual variational methods in critical point theory and applications. J. Funct. Anal., 14(4), 349–381 (1973)MATHCrossRefMathSciNetGoogle Scholar
  25. [25]
    Lions, P. L.: The concentration compactness principle in the calculus of variations, the limit case(I). Rev. Mat. Iberoamericana, 1(1), 145–201 (1985)MATHMathSciNetGoogle Scholar
  26. [26]
    Lions, P. L.: The concentration compactness principle in the calculus of variations, the limit case(II). Rev. Mat. Iberoamericana, 1(2), 45–121 (1985)MATHMathSciNetGoogle Scholar

Copyright information

© Institute of Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Chinese Mathematical Society and Springer-Verlag GmbH 2009

Authors and Affiliations

  1. 1.Department of MathematicsSouth-Central University for NationalitiesWuhanP. R. China

Personalised recommendations