Acta Mathematica Sinica, English Series

, Volume 24, Issue 4, pp 663–686 | Cite as

Irrationality of some p-adic L-values

Article

Abstract

We give a proof of the irrationality of p-adic zeta-values ζp(k) for p = 2,3 and k = 2, 3. Such results were recently obtained by Calegari as an application of overconvergent p-adic modular forms. In this paper we present an approach using classical continued fractions discovered by Stieltjes. In addition we show the irrationality of some other p-adic L-series values, and values of the p-adic Hurwitz zeta-function.

Keywords

irrationality p-adic L-series continued fraction 

MR(2000) Subject Classification

11J72 11S40 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Rivoal, T., Ball, R.: Irrationalité de d’une infinité de valeurs de la function zêta aux entiers impairs. Inv. Math., 146, 193–207 (2001)CrossRefMathSciNetMATHGoogle Scholar
  2. [2]
    Zudilin, W.: Arithmetic of linear forms involving odd zeta values. J. Théorie des Nombres Bordeaux, 16, 251–291 (2004)MathSciNetMATHGoogle Scholar
  3. [3]
    Rivoal, T., Zudilin, W.: Diophantine properties of numbers related to catalan’s constant. Math. Ann., 326, 705–721 (2003)CrossRefMathSciNetMATHGoogle Scholar
  4. [4]
    Beukers, F.: Irrationality proofs using modular forms, Journées Arithmétiques de Besanco, volume 147–148 of Astérisque, pages 271–284, 1987Google Scholar
  5. [5]
    Calegari, F.: Irrationality of certain p-adic periods for small p. Int. Math. Research Notices, 20, 1235–1249 (2005)CrossRefMathSciNetGoogle Scholar
  6. [6]
    Prévost, M.: A new proof of the irrationality of ζ(2) and ζ(3) using padé approximants. J. Comp. Appl. Math., 67, 219–235 (1996)CrossRefMATHGoogle Scholar
  7. [7]
    Rivoal, T.: Nombres d’euler, approximants de padet constant de catalan. Ramanujan Math. J., 11, 199–214, (2006)CrossRefMathSciNetMATHGoogle Scholar
  8. [8]
    Washington, L.: Introduction to cyclotomic Fields, Springer-Verlag, New York, 1997MATHGoogle Scholar
  9. [9]
    Diamond, J.: On the values of p-adic l-functions at positive integers. Acta Arith., 35, 223–237 (1979)MathSciNetMATHGoogle Scholar
  10. [10]
    Stieltjes, T. J.: Sur quelques intégrales définies et leur devéloppement en fractions continues. Quarterly J. Math. London, 24, 370–382 (1890)Google Scholar
  11. [11]
    Touchard, J.: Nombres exponentiels et nombres de bernoulli. Canad. J. Math., 8, 305–320 (1956)MathSciNetMATHGoogle Scholar
  12. [12]
    Carlitz, L.: Some polynomials of touchard connected with the bernoulli numbers. Canad. J. Math., 9, 188–190 (1957)MathSciNetMATHGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Department of MathematicsUniversitry of UtrechtUtrechtNetherlands

Personalised recommendations