Acta Mathematica Sinica, English Series

, Volume 23, Issue 4, pp 613–622

Dimensional Properties of Fractional Brownian Motion



Let Bα = {Bα(t), t ∈ ℝN} be an (N, d)-fractional Brownian motion with Hurst index α ∈ (0, 1). By applying the strong local nondeterminism of Bα, we prove certain forms of uniform Hausdorff dimension results for the images of Bα when N >αd. Our results extend those of Kaufman for one-dimensional Brownian motion.


fractional Brownian motion Hausdorff dimension uniform dimension results strong local nondeterminism 

MR (2000) Subject Classification

60G15 60G17 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  1. 1.Department of Statistics and Probability, A-413 Wells HallMichigan State UniversityEast LansingUSA

Personalised recommendations