Acta Mathematica Sinica, English Series

, Volume 23, Issue 4, pp 613–622 | Cite as

Dimensional Properties of Fractional Brownian Motion

ORIGINAL ARTICLES

Abstract

Let B α = {B α (t), t ∈ ℝ N } be an (N, d)-fractional Brownian motion with Hurst index α ∈ (0, 1). By applying the strong local nondeterminism of B α , we prove certain forms of uniform Hausdorff dimension results for the images of B α when N >αd. Our results extend those of Kaufman for one-dimensional Brownian motion.

Keywords

fractional Brownian motion Hausdorff dimension uniform dimension results strong local nondeterminism 

MR (2000) Subject Classification

60G15 60G17 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adler, R. J.: The Geometry of Random Fields, Wiley, New York, 1981Google Scholar
  2. 2.
    Kahane, J. P.: Some Random Series of Functions, 2nd edition, Cambridge University Press, Cambridge, 1985Google Scholar
  3. 3.
    Monrad, D., Pitt, L. D.: Local nondeterminism and Hausdorff dimension. In: Progress in Probability and Statistics. Seminar on Stochastic Processes 1986, (E, Cinlar, K. L. Chung, R. K. Getoor, Editors), 163–189, Birkhauser, Boston (1987)Google Scholar
  4. 4.
    Pitt, L. D.: Local times for Gaussian vector fields. Indiana Univ. Math. J., 27, 309–330 (1978)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Rosen, J.: Self-intersections of random fields. Ann. Probab., 12, 108–119 (1984)MATHMathSciNetGoogle Scholar
  6. 6.
    Talagrand, M.: Hausdorff measure of trajectories of multiparameter fractional Brownian motion. Ann. Probab., 23, 767–775 (1995)MATHMathSciNetGoogle Scholar
  7. 7.
    Xiao, Y.: Hölder conditions for the local times and the Hausdorff measure of the level sets of Gaussian random fields. Probab. Theory Relat. Fields, 109, 129–157 (1997)MATHCrossRefGoogle Scholar
  8. 8.
    Xiao, Y.: Packing dimension of the image of fractional Brownian motion. Statist. Prob. Lett., 33, 379–387 (1997)MATHCrossRefGoogle Scholar
  9. 9.
    Falconer, K. J.: Fractal Geometry, John Wiley & Sons Ltd., Chichester, 1990Google Scholar
  10. 10.
    Kaufman, R.: Une propriété métrique du mouvement brownien. C. R. Acad. Sci. Paris, 268, 727–728 (1968)MathSciNetGoogle Scholar
  11. 11.
    Xiao, Y.: Random fractals and Markov processes. In: Fractal Geometry and Applications: A Jubilee of Benoit Mandelbrot, (Michel L. Lapidus and Machiel van Frankenhuijsen, editors), 261–338, American Mathematical Society, 2004Google Scholar
  12. 12.
    Kaufman, R.: Dimensional properties of one-dimensional Brownian motion. Ann. Probab., 17, 189–193 (1989)MATHMathSciNetGoogle Scholar
  13. 13.
    Xiao, Y.: Strong local nondeterminism and the sample path properties of Gaussian random fields. Probability and Statistics with Applications (T.-L. Lai, Q.-M. Shao, L. Qian, eds), to appearGoogle Scholar
  14. 14.
    Xiao, Y.: Properties of local-nondeterminism of Gaussian and stable random fields and their applications. Ann. Fac. Sci. Toulouse Math., XV, 157–193 (2006)Google Scholar
  15. 15.
    Anderson, T. W.: The integral of a symmetric unimodal function. Proc. Amer. Math. Soc., 6, 170–176 (1955)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Khoshnevisan, D., Wu, D., Xiao, Y.: Sectorial local nondeterminism and geometric properties of the Brownian sheet. Electron. J. Probab., 11, 817–843 (2006)MathSciNetGoogle Scholar
  17. 17.
    Khoshnevisan, D., Xiao, Y.: Images of the Brownian sheet. Trans. Amer. Math. Soc., (2004), to appearGoogle Scholar
  18. 18.
    Wu, D., Xiao, Y.: Geometric properties of fractional Borwnian sheets. J. Fourier Anal. Appl., to appearGoogle Scholar
  19. 19.
    Xiao, Y.: Uniform packing dimension results for fractional Brownian motion. In: Probability and Statistics – Rencontres Franco–Chinoises en Probabilités et Statistiques, (A. Badrikian, P. A. Meyer and J. A. Yan, eds.), pp. 211-219. World Scientific. 1993Google Scholar
  20. 20.
    Talagrand, M., Xiao, Y.: Fractional Brownian motion and packing dimension. J. Theoret. Probab., 9, 579–593 (1996)MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Falconer, K. J., Howroyd, J. D.: Packing dimensions for projections and dimension profiles. Math. Proc. Combridge Philo. Soc., 121, 269–286 (1997)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  1. 1.Department of Statistics and Probability, A-413 Wells HallMichigan State UniversityEast LansingUSA

Personalised recommendations