Advertisement

Acta Mathematica Sinica, English Series

, Volume 23, Issue 1, pp 23–28 | Cite as

Circulant Double Coverings of a Circulant Graph of Valency Five

  • Rong Quan Feng
  • Jin Ho Kwak
ORIGINAL ARTICLES

Abstract

Enumerating the isomorphism classes of several types of graph covering projections is one of the central research topics in enumerative topological graph theory. A covering of G is called circulant if its covering graph is circulant. Recently, the authors [Discrete Math., 277, 73–85 (2004)] enumerated the isomorphism classes of circulant double coverings of a certain type, called a typical covering, and showed that no double covering of a circulant graph of valency three is circulant. Also, in [Graphs and Combinatorics, 21, 386–400 (2005)], the isomorphism classes of circulant double coverings of a circulant graph of valency four are enumerated. In this paper, the isomorphism classes of circulant double coverings of a circulant graph of valency five are enumerated.

Keywords

graph covering voltage assignment Cayley circulant graph 

MR (2000) Subject Classification

05C10 05C30 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bermond, J. C., Comellas, F., Hsu, D. F.: Distributed loop computer networks: a survey. J. Parallel Distrib. Comput., 24, 2–10 (1995)CrossRefGoogle Scholar
  2. 2.
    Park, J. H., Chwa, K. Y.: Recursive circulant: a new topology for multicomputer networks, Proc. Internat. Symp. Parallel Architectures, Algorithms and Networks (ISPAN’94), IEEE press, New York, 73–80, 1994Google Scholar
  3. 3.
    Gross, J. L., Tucker, T. W.: Generating all graph coverings by permutation voltage assignments. Discrete Math., 18, 273–283 (1977)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Feng, R., Kwak, J. H., Kim, J., Lee, J.: Isomorphism classes of concrete graph coverings. SIAM J. Disc. Math., 11, 265–272 (1998)CrossRefGoogle Scholar
  5. 5.
    Hofmeister, M.: Isomorphisms and automorphisms of coverings. Discrete Math., 98 175–183 (1991)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Hong, S., Kwak, J. H., Lee, J.: Regular graph coverings whose covering transformation groups have the isomorphism extension property. Discrete Math., 148, 85–105 (1996)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Kwak, J. H., Chun, J., Lee, J.: Enumeration of regular graph coverings having finite abelian covering transformation groups. SIAM J. Disc. Math., 11, 273–285 (1998)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Kwak, J. H., Lee, J.: Enumeration of connected graph coverings. J. Graph Theory, 23, 105–109 (1996)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Siagiova, J.: Composition of regular coverings of graphs. J. Electrical Engineering, 50, 75–77 (1999)Google Scholar
  10. 10.
    Siagiova, J.: Composition of regular coverings of graphs and voltage assignments. Australasian J. Combinatorics, 28, 131–136 (2003)MathSciNetGoogle Scholar
  11. 11.
    Feng, R., Kwak, J. H.: Typical circulant double coverings of a circulant graph. Discrete Math., 277, 73–85 (2004)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Feng, R., Kwak, J. H., Kwon, Y. S.: Enumerating typical circulant covering projections onto a circulant graph. SIAM J. Disc. Math., 19, 196–207 (2005)CrossRefGoogle Scholar
  13. 13.
    Kwak, J. H., Lee, J.: Isomorphism classes of graph bundles. Canad. J. Math., XLII, 747–761 (1990)MathSciNetGoogle Scholar
  14. 14.
    Feng, R., Kwak, J. H.: Circulant double coverings of a circulant graph of valency four. Graphs and Combinatorics, 21, 386–400 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  1. 1.LMAM, School of Mathematical SciencesPeking UniversityBeijing 100871P. R. China
  2. 2.MathematicsPohang University of Science and TechnologyPohang, 790–784Korea

Personalised recommendations