Acta Mathematica Sinica

, Volume 22, Issue 6, pp 1797–1804 | Cite as

Positive Solutions for Second–Order m–Point Boundary Value Problems on Time Scales

ORIGINAL ARTICLES

Abstract

Let \({\Bbb T}\) be a time scale such that 0, T\({\Bbb T}\). By means of the Schauder fixed point theorem and analysis method, we establish some existence criteria for positive solutions of the m–point boundary value problem on time scales
$$ \begin{array}{*{20}c} {{u^{{\Delta \nabla }} {\left( t \right)} + a{\left( t \right)}f{\left( {u{\left( t \right)}} \right)} = 0,t \in {\left( {0,T} \right)},}} & {{\beta u{\left( 0 \right)} - \gamma u^{\Delta } {\left( 0 \right)},u{\left( T \right)} - {\sum\limits_{i = 1}^{m - 2} {a_{i} u{\left( {\xi _{i} } \right)}} } = b,m \geqslant 3,}} \\ \end{array} $$
where aCld ((0, T), [0,∞)), fCld ([0,∞) × [0,∞), [0,∞)), β, γ ∈ [0,∞), ξi ∈ (0, ρ(T)), b, ai ∈ (0,∞) (for i = 1, . . . ,m− 2) are given constants satisfying some suitable hypotheses. We show that this problem has at least one positive solution for sufficiently small b > 0 and no solution for sufficiently large b. Our results are new even for the corresponding differential equation (\({\Bbb T}\) = ℝ) and difference equation (\({\Bbb T}\) = ℤ).

Keywords

time scales positive solution Schauder fixed point theorem 

MR (2000) Subject Classification

34B15 39A10 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hilger, S.: Analysis on measure chains–a unified approach to continuous and discrete calculus. Results Math., 18, 18–56 (1990)MATHMathSciNetGoogle Scholar
  2. 2.
    Agarwal, R. P., Bohner, M., Li, W. T.: Nonoscilation and Oscillation Theory for Functional Differential Equations, Pure and Applied Mathematics Series, 267, Marcel Dekker, New York, 2004Google Scholar
  3. 3.
    Bohner, M., Peterson, A.: Dynamic Equations on Time Scales, An Introduction with Applications, Birkhauser, Boston, 2001Google Scholar
  4. 4.
    Atici, F. M., Guseinov, G. Sh.: On Green’s functions and positive solutions for boundary value problems on time scales. J. Comput. Appl. Math., 141, 75–99 (2002)MATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Bohner, M., Peterson, A.: Advances in Dynamic Equations on Time Scales, Birkhauser, Boston, 2003Google Scholar
  6. 6.
    Ma, R.: Positive solutions for second order three–point boundary value problems. Appl. Math. Lett., 14, 1–5 (2001)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Guo, Y., Shan, W., Ge, W.: Positive solutions for second order m–point boundary value problems. J. Comput. Appl. Math., 151, 415–424 (2003)MATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    Anderson, D. R.: Extension of a second–order multi–point problem on time scales. Dynamic Systems and Applications, 12, 393–404 (2003)MATHMathSciNetGoogle Scholar
  9. 9.
    Anderson, D. R.: Twin n–point boundary value problems. Appl. Math. Lett., 17, 1053–1059 (2004)MATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    DaCunha, J. J., Davis, J. M., Singh, P. K.: Existence results for a singular three point boundary value problems on time scales. J. Math. Anal. Appl., 295, 378–391 (2004)MATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    Eggensperger, M., Kaufmann, E. R., Kosmatov, N.: Solution matching for a three–point boundary–value problem on a time scale. Electron. J. Differential Equations, 2004(91), 1–7 (2004)Google Scholar
  12. 12.
    Erbe, L., Peterson, A.: Green’s functions and comparison theorems for differential equations on measure chains. Dynam. Contin. Discrete Impuls. Systems, 6, 121–137 (1999)MATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    Henderson, J.: Multiple solutions for 2mth order Sturm–Liouville boundary value problems on a measure chain. J. Differ. Equations Appl., 6, 417–429 (2000)MATHMathSciNetGoogle Scholar
  14. 14.
    Kaufmann, E. R.: Positive solutions of a three–point boundary–value problem on a time scale. Electron. J. Differential Equations, 2003(82), 1–11 (2003)MathSciNetGoogle Scholar
  15. 15.
    Kaufmann, E. R., Raffoul, Y. N.: Eigenvalue problems for a three–point boundary–value problem on a time scale. Electron. J. Qual. Theory Differ. Equ., 2004(2), 1–10 (2004)MATHMathSciNetGoogle Scholar
  16. 16.
    Li, W. T., Sun, H. R.: Multiple positive solutions for nonlinear dynamic systems on a measure chain. J. Comput. Appl. Math., 162, 421–430 (2004)MATHMathSciNetCrossRefGoogle Scholar
  17. 17.
    Sun, H. R., Li, W. T.: Existence of positive solutions for nonlinear three–point boundary value problems on time scales. J. Math. Anal. Appl., 299, 508–524 (2004)MATHMathSciNetCrossRefGoogle Scholar
  18. 18.
    Sun, H. R., Li, W. T.: Positive solutions for nonlinear m–point boundary value problems on time scales. Acta Mathematica Sinica, Chinese Series, 49(2), (2006)Google Scholar
  19. 19.
    Sun, H. R., Li, W. T.: Multiple positive solutions for even order Sturm–Liouville boundary value problems. Acta Mathematica Scientia, in press.Google Scholar
  20. 20.
    Ma, R., Ma, Q.: Positive solutions for semipositone m–point boundary–value problem. Acta Mathematica Sinica, English Series, 20(2), 273–282 (2004)MATHMathSciNetCrossRefGoogle Scholar
  21. 21.
    Yao, Q.: Existence, multiplicity and infinite solvability of positive solutions for one–dimensional p–Laplacian. Acta Mathematica Sinica, English Series, 21(4), 691–698 (2005)MATHMathSciNetCrossRefGoogle Scholar
  22. 22.
    Anderson, D. R.: Solutions to second–order three–point problems on time scales. J. Differ. Equations Appl., 8, 673–688 (2002)MATHCrossRefGoogle Scholar
  23. 23.
    Agarwal, R. P., Bohner, M., Rehak, P.: Half–linear dynamic equations, in nonlinear analysis and applications: to V. Lakshmikantham on his 80th birthday, 1/2, 1–57, Kluwer Acad. Publ., Dordrecht (2003)Google Scholar
  24. 24.
    Aulbach, B., Neidhart, L.: Integration on measure chains, In Proceedings of the Sixth International Conference on Difference Equations, 239–252, CRC, Boca Raton, 2004Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  1. 1.School of Mathematics and StatisticsLanzhou UniversityLanzhou 730000P. R. China

Personalised recommendations