Acta Mathematica Sinica

, Volume 22, Issue 2, pp 347–356 | Cite as

Multilinear Singular and Fractional Integrals

  • Yong DingEmail author
  • Shan Zhen Lu
  • Kôzô Yabuta


In this paper, we treat a class of non–standard commutators with higher order remainders in the Lipschitz spaces and give (L p , L q ), (H p , L q ) boundedness and the boundedness in the Triebel– Lizorkin spaces. Our results give simplified proofs of the recent works by Chen, and extend his result.


commutators multilinear operators singular and fractional integrals Lp spaces Hardy spaces Lipschitz spaces Triebel–Lizorkin spaces 

MR (2000) Subject Classification

42B20 42B25 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chen, W. G.: A Besov estimate for multilinear singular integrals. Acta Math. Sinica, English Series, 16, 613–626 (2000)zbMATHGoogle Scholar
  2. 2.
    Triebel, H.: Theory of Function Spaces, Birkhäuer Verlag, Basel, 1983Google Scholar
  3. 3.
    Janson, S.: Mean oscillation and commutators of singular integral operators. Ark. Mat., 16, 263–270 (1978)zbMATHMathSciNetGoogle Scholar
  4. 4.
    Palusziński, M.: Characterization of the Besov spaces via the commutator of Coifman, Rochberg and Weiss. Indiana Univ. Math. J., 44, 1–17 (1995)MathSciNetGoogle Scholar
  5. 5.
    Coifman, R., Rochberg, R., Weiss, G.: Factorization theorems for Hardy spaces in several variables. Ann. of Math., 103, 611–635 (1976)zbMATHMathSciNetGoogle Scholar
  6. 6.
    Cohen, J., Gosselin, J.: A BMO estimate for multilinear singular integral operators. Illinois J. Math., 30, 445–464 (1986)zbMATHMathSciNetGoogle Scholar
  7. 7.
    Bajsanski, B., Coifman, R.: On singular integrals. Proc. Sympos. Pure Math., Amer. Math. Soc. Providence, R. I., 10, 1–17 (1967)zbMATHMathSciNetGoogle Scholar
  8. 8.
    Stein, E. M., Taibleson, M., Weiss, G.: Weak type estimates for maximal operators on certain Hp spaces. Rend. Circ. Mat. Palermo, Suppl., 1, 81–97 (1981)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  1. 1.School of Mathematical SciencesBeijing Normal UniversityBeijing 100875P. R. China
  2. 2.School of Science and TechnologyKwansei Gakuin UniversitySanda 669–1337Japan

Personalised recommendations