Advertisement

Acta Mathematica Sinica

, Volume 21, Issue 3, pp 491–496 | Cite as

Oscillatory Periodic Solutions of Nonlinear Second Order Ordinary Differential Equations

  • Yong Xiang Li
ORIGINAL ARTICLES

Abstract

In this paper the existence results of oscillatory periodic solutions are obtained for a second order ordinary differential equation −u"(t) = f(t, u(t)), where f : R 2R is a continuous odd function and is 2π–periodic in t. The discussion is based on the fixed point index theory in cones.

Keywords

Second order differential equation Oscillatory periodic solution Cone Fixed point index 

MR (2000) Subject Classification

34C25 47H10 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Leela, S.: Monotone method for second order periodic boundary value problems. Nonlinear Anal., 7, 349–355 (1983)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Nieto, J. J.: Nonlinear second–order periodic boundary value problems. J. Math. Anal. Appl., 130, 22–29 (1988)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Cabada, A., Nieto, J. J.: A generation of the monotone iterative technique for nonlinear second–order periodic boundary value problems. J. Math. Anal. Appl., 151, 181–189 (1990)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Cabada, A.: The method of lower and upper solutions for second, third, forth, and higher order boundary value problems. J. Math. Anal. Appl., 185, 302–320 (1994)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Gossez, J. P., Omari, P.: Periodic solutions of a second order ordinary differential equation: A necessary and sufficient condition for nonresonance. J. Diff. Equs., 94, 67–82 (1991)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Omari, P., Villari, G., Zandin, F.: Periodic solutions of Lienard equation with one–sided growth restrictions. J. Diff. Equs., 67, 278–293 (1987)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Ge, W. G.: On the existence of harmonic solutions of Lienard system. Nonlinear Anal., 16, 183–190 (1991)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Mawhin, J., Willem, M.: Multiple solutions of the periodic boundary value problem for some forced pendulum–type equations. J. Diff. Equs., 52, 264–287 (1984)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Zelati, V. C.: Periodic solutions of dynamical systems with bounded potential. J. Diff. Equs., 67, 400–413 (1987)CrossRefGoogle Scholar
  10. 10.
    Lassoued, L.: Periodic solutions of a second order superquadratic system with a change of Sign in potential. J. Diff. Equs., 93, 1–18 (1991)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Ding, T. R.: Nonlinear oscillations at a point of resonance. Scientia Sinica, Sir. A, 12(8), 918–931 (1982)Google Scholar
  12. 12.
    Ding, W. Y.: Fixed points of twist mapping and periodic solutions of ordinary differential equations. Acta Math. Sinica, Chinese Series, 25, 227–235 (1982)Google Scholar
  13. 13.
    Li, W. G.: A necessary and sufficient condition on existence and uniqueness of 2π–periodic solution of Duffing equation. Chinese Ann. Math., 11B, 342–345 (1990)Google Scholar
  14. 14.
    Li, Y. X.: Positive periodic solutions of nonlinear second order ordinary differential equations. Acta Math. Sinica, Chinese Series, 45, 481–488 (2002)Google Scholar
  15. 15.
    Wang, H.: On the existence of positive solutions for semilinear elliptic equations in the annulus. J. Diff. Equs., 109, 1–7 (1994)CrossRefGoogle Scholar
  16. 16.
    Erbe, H. L., Wang, H.: On the existence of positive solutions of ordinary differential equations. Proc. Amer. Math. Soc., 120, 743–748 (1994)CrossRefMathSciNetGoogle Scholar
  17. 17.
    Liu, Z. L., Li, F. Y.: Multiple positive solutions of nonlinear two–point boundary value problems. J. Math. Anal. Appl., 203, 610–625 (1996)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Henderson, J., Wang, H.: Positive solutions for nonlinear eigenvalue problems. J. Math. Anal. Appl., 208, 610–625 (1997)CrossRefGoogle Scholar
  19. 19.
    Guo, D. J.: Nonlinear Functional Analysis, Shandong Science and Technoligy Press, Jinan, 1985 (in Chinese)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  1. 1.Department of MathematicsNorthwest Normal UniversityLanzhou 730070P. R. China

Personalised recommendations