Acta Mathematica Sinica

, Volume 21, Issue 2, pp 393–408 | Cite as

The Cauchy Problem of a Shallow Water Equation

ORIGINAL ARTICLES

Abstract

We consider the Cauchy problem of a shallow water equation and its local wellposedness.

Keywords

Cauchy problem Wellposedness Shallow water equation 

MR (2000) Subject Classification

35Q53 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fokas, A. S., Fuchssteiner, B.: Symplectic structures, their Bäcklund transformation and hereditary symmetries. Phys. D., 4, 47–66 (1981–1982)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Camassa, R., Holm, D.: An integrable shallow water equation with peaked solitons. Phys. Rev. Letters, 17, 1661–1664 (1993)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Constantin, A., Escher, J.: Well–posedness, global existence, and blowup phenomena for a periodic quasilinear hyperbolic equation. Comm. Pure Appl. Math., 51, 475–504 (1998)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Constantin, A., Escher, J.: Global weak solutions for a shallow water equation. Indiana Univ. Math. J., 47, 1525–1545 (1998)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Constantin, A., Escher, J.: On the structure of a family of quasilinear equations arising in shallow water theory. Math. Ann., 312, 403–416 (1998)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Himonas, A. A., Misiolek, G.: The Cauchy problem for a shallow water type equation. Comm. PDE, 23(2), 123–139 (1998)MathSciNetGoogle Scholar
  7. 7.
    Bourgain, J.: Fourier restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations I, Schrödinger equations. GAFA, 3, 107–156 (1993)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Bourgain, J.: Fourier restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations II, The Periodic KdV Equation. GAFA, 3, 209–262 (1993)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Kenig, C. E., Ponce, G., Vega. L.: The Cauchy problem for the Korteweg–de Vries equation in Sobolev spaces of negative indices. Duke Math. J., 71, 1–21 (1993)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Kenig, C. E., Ponce, G., Vega. L.: A bilinear estimate with applications to the KdV equation. J. Amer. Math., 9(2), 573–603 (1996)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  1. 1.Department of MathematicsEast China Normal UniversityShanghai 200062P. R. China
  2. 2.Department of Application MathematicsZhejiang University of TechnologyHangzhou 310032P. R. China

Personalised recommendations