Acta Mathematica Sinica

, Volume 19, Issue 2, pp 313–326

On Bounds for Spectra of Operator Pencils in a Hilbert Space

ORIGINAL ARTICLES

Abstract

A class of pencils (operator-valued functions of a complex argument) in a separable Hilbert space is considered. Bounds for the spectra are derived.

Applications to differential operators, integral operators with delay and infinite matrix pencils are discussed.

Keywords

Linear operators Pencils Spectrum Integral and differential operators Infinite matrices 

MR (2000) Subject Classification

47A55 47A75 47G10 47G20 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Atkinson, F. V., Langer H., Mennichen R.: Sturm-Liouvlille problems with coefficients which depend analytically on the eigenvalue parameter. Acta Sci. Math. (Szeged), 57, 25–44 (1993)Google Scholar
  2. 2.
    Fattorini, H. O.: Second Order Linear Differential Equations in Banach Spaces, North-Holland, Amsterdam (1983)Google Scholar
  3. 3.
    Kolmanovskii, V., Myshkis, A. D.: Introduction to the Theory and Applications of Functional Differential Equations, Kluwer Academic Publishers, Dordrecht (1998)Google Scholar
  4. 4.
    Lifschitz, A. E.: Magnetohydrodynamics and Spectral Theory, Kluwer Academic Publishers, Dordrecht (1989)Google Scholar
  5. 5.
    Wu, J.: Theory andAp plications of Partial Functional Differential Equations, Springer-Verlag, New York (1996)Google Scholar
  6. 6.
    Gohberg I., Krein, M. G.: Theory andA pplications of Volterra Operators in Hilbert Space, Trans. Mathem. Monographs, vol. 24, Amer. Math. Soc., R. I. (1970)Google Scholar
  7. 7.
    Markus, A. S.: Introduction to the Spectral Theory of Polynomial Operator Pencils, Amer. Math. Soc., Providence (1988)Google Scholar
  8. 8.
    Rodman, L.: An Introduction to Operator Polynomials, Birkhäuser Verlag, Basel-Boston-Stuttgart (1989)Google Scholar
  9. 9.
    Tretter, Chr.: On λ-Nonlinear Boundary Eigenvalue Problems, Akademie Verlag, Berlin (1993)Google Scholar
  10. 10.
    Yakubov, S., Yakubov, Y.: Differential Operator Equations, Chapman & Hall/CRC, Boca Raton-New York-Washington (2000)Google Scholar
  11. 11.
    Edmunds, D. E., Evans, W. D.: Spectral Theory and Differential Operators. Clarendon Press, Oxford (1990)Google Scholar
  12. 12.
    Egorov, Y., Kondratiev, V.: Spectral Theory of Elliptic Operators, Birkhäuser Verlag, Basel (1996)Google Scholar
  13. 13.
    König, H.: Eigenvalue Distribution of Compact Operators, Birkhäuser Verlag, Basel- Boston-Stuttgart (1986)Google Scholar
  14. 14.
    Pietsch, A.: Eigenvalues and s-Numbers, Cambridge University Press, Cambridge (1987)Google Scholar
  15. 15.
    Prössdorf, S.: Linear Integral Equations, Itogi Nauki i Tekhniki, Fundamental’nye napravleniya, 27, VINITI, Moscow, In Russian (1988)Google Scholar
  16. 16.
    Gil’, M. I.: Bounds for the spectrum of analytic quasinormal operator pencils. Communications in Contemporary Mathematics (to appear)Google Scholar
  17. 17.
    Brodskii, M. S.: Triangular and Jordan Representations of Linear Operators, Transl. Math. Monogr., v. 32, Amer. Math. Soc. Providence, R. I. (1971)Google Scholar
  18. 18.
    Gil’, M. I.: Norm Estimations for Operator-valued Functions and Applications. Marcel Dekker Inc., New York (1995)Google Scholar
  19. 19.
    Gil’, M. I.: Invertibility andsp ectrum localization of non-selfadjoint operators. Adv. in Applied Mathematics., 28, 40–58 (2002)CrossRefMathSciNetGoogle Scholar
  20. 20.
    Ostrowski, A. M.: Solution of Equations in Euclidean and Banach spaces. AC. Press, New York-London (1973)Google Scholar
  21. 21.
    Pao, C.V.: Nonlinear Parabolic andElliptic Equations. Plenum Press, New York (1992)Google Scholar
  22. 22.
    Gil’, M. I.: Invertibility conditions and bounds for spectra of matrix integral operators. Monatshefte für Mathematik 129, 15–24 (2000)CrossRefMathSciNetGoogle Scholar
  23. 23.
    Gil’, M. I.: Stability of Fredholm type Integro-Parabolic Equations. J. of Math. Anal. Applications, 244, 318–332 (2000)CrossRefMathSciNetGoogle Scholar
  24. 24.
    Locker, J.: Spectral Theory of Nonselfadjoint Two Point Differential Operators. Amer. Math. Soc, Mathematical Surveys andM onographs, Volume 73, R. I. (1999)Google Scholar
  25. 25.
    Safarov, Yu., Vassiliev, D.: The Asymptotic Distribution of Eigenvalues of Partial Differential Operators. Amer. Math. Soc., R. I. (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  1. 1.Department of MathematicsBen Gurion University of the NegevBeer-Sheva 84105Israel

Personalised recommendations