Modelling lake water and isotope mass balance variations of Lake Azigza in the Moroccan Middle Atlas under Mediterranean climate

  • Rachid AdallalEmail author
  • Christine Vallet-Coulomb
  • Laurence Vidal
  • Abdelfattah Benkaddour
  • Ali Rhoujjati
  • Corinne Sonzogni
Original Article
Part of the following topical collections:
  1. Climate change impacts in the Mediterranean


As many Mediterranean headwater catchments, the Moroccan Middle Atlas plays an important role in the highly vulnerable regional water resources. Mountain lakes are numerous in this region, and could be regarded as possible sentinels of hydro-climatic changes, using appropriate modelling tools able to simulate the lake-climate relation. We present a detailed study of Lake Azigza, based on a 4-year (2012–2016) observation period, including lake level measurements, isotope analyses of precipitation, lake and spring waters, and local meteorological data. The approach is based on a calibration of a daily time-step lake water and isotope mass balance model, fed by precipitation and evaporation rates, to estimate the ungauged components of the water balance. Results show the dominance of groundwater exchanges in the lake water balance, with significant interannual variations related to annual precipitation. At the annual time-step, groundwater inflow varies between twice and up to six times the amount of direct precipitation, while the groundwater loss reached up to five times evaporation. However, a significant decrease of groundwater loss is observed in 2016, suggesting that a threshold effect probably limits the seepage when the lake level decreases. This study underlines the importance of groundwater fluxes in the lake level variations for Lake Azigza, probably representative of many similar lakes in the Middle Atlas. The model was able to simulate the continuous lake level decrease (4 m) observed over 2012–2016 and can be further used to explore lake-climate relations at different timescales.


Lake level Stable isotopes Lake-groundwater exchanges Middle Atlas 



The support of the LMI-TREMA-Marrakech (IRD) for Lake Azigza monitoring is acknowledged. We also particularly thank the SETEL- and SIGEO- CEREGE and IRD-Rabat for logistic support during the field trips (2013 and 2015).

Funding information

This work and the associated PhD (RA) were funded by FR-ECCOREV, LABEX OT-Med (# ANR-11-LABX-0061) (PHYMOR project) (France), CNRST (Morocco), and PHC Toubkal (Project # 16/38).

Supplementary material

10113_2019_1566_MOESM1_ESM.jpg (4.6 mb)
Fig. SM1 a) Hydrogeological map and hydrographic network of the High Oum-Er-Rbia sub-catchment delineated at Khenifra city showing the position of the hydro-meteorological stations (red squares), Oum-Er-Rbia springs (red circle) and the Azigza lake catchment (red line) (after Bentayeb and Leclerc 1977); b) Corresponding geological map (from Service Géologique du Maroc, 1985) (JPG 4708 kb)
10113_2019_1566_MOESM2_ESM.jpg (2.6 mb)
Fig. SM2 Relations between lake water level, area, and volume, and the lake level range observed between 2012 and 2016 (grey shadow) (JPG 2671 kb)
10113_2019_1566_MOESM3_ESM.jpg (2.6 mb)
Fig. SM3 a) δ18O-δ2H cross plots of a) Precipitation isotopic compositions, with monthly data (triangles) and weighted averages (circles) for Azigza (n = 23) and the neightboring GNIP station (Fès, n = 80) and the Moroccan Meteoric Water Line MMWL established by Ait Brahim et al. (2016) (δ2H = 7.7 × δ18O + 9.2, r2 = 0.93, n = 494, black line); b) Rain isotopic composition (δ18O) measured at Azigza meteorological station (JPG 2634 kb)
10113_2019_1566_MOESM4_ESM.jpg (3.6 mb)
Fig. SM4 a) Meteorological variables measured (from November 2014 to May 2016) at Azigza station (Tw: water temperature, Ta: air temperature, rh: relative humidity); b) Daily evaporation (E, blue), with corresponding change of energy storage (∆S, red) and its sinusoidal approximation (dotted black line) (JPG 3701 kb)
10113_2019_1566_MOESM5_ESM.jpg (2.5 mb)
Fig. SM5 Relation between annual rainfall and runoff (Q) at the Tamchachate catchment (1975-2009), compared to Azigza Rainfall and groundwater inflows (Gi) values for 2012-2013 and 2013-2014 (JPG 2594 kb)
10113_2019_1566_MOESM6_ESM.docx (14 kb)
Table SM1 Hydrological characteristics of three sub-basins belonging to the High Oum-Er-Rbia sub-catchment (DOCX 13 kb)
10113_2019_1566_MOESM7_ESM.docx (21 kb)
Table SM2 Details of stable isotopic compositions (δ18O and δ2H) of Azigza Lake system waters (DOCX 21 kb)


  1. Abba H, Nassali H, Benabid M, El Ibaoui H, Chillasse L (2012) Approche physicochimique des eaux du lac dayet Aoua (Maroc). J Appl Biosci (ISSN 1997-5902) 58:4262–4270Google Scholar
  2. Ait Brahim Y, Bouchaou L, Sifeddine A, Khodri M, Reichert B, Cruz FW (2016) Elucidating the climate and topographic controls on stable isotope composition of meteoric waters in Morocco, using station-based and spatially-interpolated data. J Hydrol 543:305–315. CrossRefGoogle Scholar
  3. Anderson ER (1954) Energy-budget studies. In: Water-Loss Investigations: Lake Hefner Studies, Technical report. US Geological Survey Professional, Washington, pp 71–119Google Scholar
  4. Arnoux M, Barbecot F, Gibert-Brunet E, Gibson J, Rosa E, Noret A, Monvoisin G (2017) Geochemical and isotopic mass balances of kettle lakes in southern Quebec (Canada) as tools to document variations in groundwater quantity and quality. Environ Earth Sci 76:1–14. CrossRefGoogle Scholar
  5. Benkaddour A, Rhoujjati A, Nourelbait M (2008) Hydrologie et sédimentation actuelles au niveau des lacs Iffer et Aguelmam Azigza (Moyen Atlas, Maroc). In: Aouraghe H, Haddoumi H, Hammouti KE (eds) Le quaternaire marocain dans son contexte méditerranéen: actes de la quatrième rencontre des quaternaristes marocains (RQM4). Faculté des Sciences d’Oujda, Oujda, pp 108–118Google Scholar
  6. Bentayeb A, Leclerc C (1977) Le causse moyen atlasique. In: Ressources en Eau du Maroc. Service géologique du Maroc, Rabat, pp 37–84Google Scholar
  7. Bouchez C, Goncalves J, Deschamps P, Vallet-Coulomb C, Hamelin B, Doumnang JC, Sylvestre F (2016) Hydrological, chemical, and isotopic budgets of Lake Chad: A quantitative assessment of evaporation, transpiration and infiltration fluxes. Hydrol Earth Syst Sci 20:1599–1619. CrossRefGoogle Scholar
  8. Brutsaert W (1982) Evaporation into the atmosphere: theory, history, and applications. Springer Netherlands, Dordrecht 299 ppCrossRefGoogle Scholar
  9. Chehbouni A, Escadafal R, Duchemin B, Boulet G, Simonneaux V, Dedieu G, Mougenot B, Khabba S, Kharrou H, Maisongrande P, Merlin O, Chaponnière A, Ezzahar J, Er-Raki S, Hoedjes J, Hadria R, Abourida A, Cheggour A, Raibi F, Boudhar A, Benhadj I, Hanich L, Benkaddour A, Guemouria N, Chehbouni AH, Lahrouni A, Olioso A, Jacob F, Williams DG, Sobrino JA (2008) An integrated modelling and remote sensing approach for hydrological study in arid and semi-arid regions: the SUDMED programme. Int J Remote Sens 29:5161–5181. CrossRefGoogle Scholar
  10. Cogley JG (1979) The albedo of water as a function of latitude. Mon Weather Rev 107:775–781.<0775:TAOWAA>2.0.CO;2 CrossRefGoogle Scholar
  11. Craig H, Gordon L (1965) Deuterium and oxygen 18 variations in the ocean and the marine atmosphere. In: Tongiogi E (ed) Stable Isotopes in Oceanographic Studies and Paleotemperatures. Laboratorio di Geologia Nucleare, Spoleto, Italy, Pisa, pp 9–130Google Scholar
  12. Cui J, Tian L, Gibson JJ (2018) When to conduct an isotopic survey for lake water balance evaluation in highly seasonal climates. Hydrol Process 32:379–387. CrossRefGoogle Scholar
  13. Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Hólm EV, Isaksen L, Kaallberg P, Köhler M, Matricardi M, Mcnally AP, Monge-Sanz BM, Morcrette JJ, Park BK, Peubey C, de Rosnay P, Tavolato C, Thépaut JN, Vitart F (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597. CrossRefGoogle Scholar
  14. Driouech F, Déqué M, Sánchez-Gómez E (2010) Weather regimes-Moroccan precipitation link in a regional climate change simulation. Glob Planet Chang 72:1–10. CrossRefGoogle Scholar
  15. Etebaai I, Damnati B, Raddad H, Benhardouz H, Benhardouz O, Miche H, Taieb M (2012) Impacts climatiques et anthropiques sur le fonctionnement hydrogéochimique du Lac Ifrah (Moyen Atlas marocain). Hydrol Sci J 57:547–561. CrossRefGoogle Scholar
  16. Filahi S, Tramblay Y, Mouhir L, Diaconescu EP (2017) Projected changes in temperature and precipitation indices in Morocco from high-resolution regional climate models. Int J Climatol 37:4846–4863. CrossRefGoogle Scholar
  17. Flower RJ, Foster IDL (1992) Climatic implications of recent changes in lake level at Lac Azigza (Morocco). Bull Soc Géol France 163:91–96Google Scholar
  18. Flower RJ, Stevenson AC, Dearing JA, Foster IDL, Airey A, Rippey B, Wilson JPF, Appleby PG (1989) Catchment disturbance inferred from paleolimnological studies of three contrasted sub-humid environments in Morocco. J Paleolimnol 1:293–322. CrossRefGoogle Scholar
  19. Gat JR (1996) Oxygen and hydrogen isotopes in the hydrologic cycle. Annu Rev Earth Planet Sci 24:225–262. CrossRefGoogle Scholar
  20. Gat JR, Shemesh A, Tziperman E, Hecht A, Georgopoulos D, Basturk O (1996) The stable isotope composition of waters of the eastern Mediterranean Sea. J Geophys Res Oceans 101:6441–6451. CrossRefGoogle Scholar
  21. Gayral P, Panouse JB (1954) L’Aguelmame Azigza : Recherches Physiques et Biologiques. Bull Soc Sci Nat Phys Maroc 36:135–159Google Scholar
  22. Giadrossich F, Niedda M, Cohen D, Pirastru M (2015) Evaporation in a Mediterranean environment by energy budget and Penman methods, Lake Baratz, Sardinia, Italy. Hydrol Earth Syst Sci 19:2451–2468. CrossRefGoogle Scholar
  23. Gianniou SK, Antonopoulos VZ (2007) Evaporation and energy budget in Lake Vegoritis, Greece. J Hydrol 345:212–223. CrossRefGoogle Scholar
  24. Gibson JJ, Edwards TWD (2002) Regional water balance trends and evaporation-transpiration partitioning from a stable isotope survey of lakes in northern Canada. Glob Biogeochem Cycles 16:1–14. CrossRefGoogle Scholar
  25. Gibson JJ, Birks SJ, Yi Y (2016) Stable isotope mass balance of lakes: a contemporary perspective. Quat Sci Rev 131:316–328. CrossRefGoogle Scholar
  26. Gibson JJ, Birks SJ, Jeffries D, Yi Y (2017) Regional trends in evaporation loss and water yield based on stable isotope mass balance of lakes: the Ontario Precambrian Shield surveys. J Hydrol 544:500–510. CrossRefGoogle Scholar
  27. Gonfinatini R (1986) Environmental isotopes in lake studies. In: Fritz P, Fontes JC (eds) Handbook of Environmental Isotope Geochemistry. Elsevier, Amsterdam, pp 113–168. CrossRefGoogle Scholar
  28. Hammani A, Kuper M, Debbarh A, Bouarfa S, Badraoui M, Bellouti A (2005) Evolution de l’exploitation des eaux souterraines dans le périmètre irrigué du Tadla. In: Hammani A, Kuper M, Debbarh A (eds) Actes du Séminaire Modernisation de l’Agriculture Irriguée. IAV Hassan II, Rabat, pp 1–8Google Scholar
  29. Hartmann A, Goldscheider N, Wagener T, Lange J, Weiler M (2014) Karst water resources in a changing world: Review of hydrological modeling approaches. Rev Geophys 52(3):218–242. CrossRefGoogle Scholar
  30. Hinaje S, Ait Brahim L (2002) Les bassins lacustres du Moyen Atlas, Maroc : un exemple d’activité tectonique polyphasée associée à des structures d’effondrement. In: Comunicações do Instituto Geológico e MineiroGoogle Scholar
  31. Horita J, Wesolowski DJ (1994) Liquid-vapor fractionation of oxygen and hydrogen isotopes of water from the freezing to the critical temperature. Geochim Cosmochim Acta 58:3425–3437. CrossRefGoogle Scholar
  32. Horita J, Rozanski K, Cohen S (2008) Isotope effects in the evaporation of water: a status report of the Craig – Gordon model. Isot Environ Health Stud 44:23–49. CrossRefGoogle Scholar
  33. IAEA (2009) Reference sheet for international measurement standards. International Atomic Energy Agency Department, ViennaGoogle Scholar
  34. IPCC (2013) Climate Change 2013: the physical science basis. In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge 1535 ppGoogle Scholar
  35. Jensen ME, Burman RD, Allen RG (1990) Evapotranspiration and irrigation water requirements. American Society of Civil Engineers, Manuals and Reports on Engineering Practices no. 70, New York, USA. 360 ppGoogle Scholar
  36. Jones MD, Cuthbert MO, Leng MJ, McGowan S, Mariethoz G, Arrowsmith C, Sloane HJ, Humphrey KK, Cross I (2016) Comparisons of observed and modelled lake δ18O variability. Quat Sci Rev 131:329–340. CrossRefGoogle Scholar
  37. Jouve G, Vidal L, Adallal R, Rhoujjati A, Benkaddour A, Chapron E, Tachikawa K, Bard E, Courp T, Dezileau L, Hebert B, Rapuc W, Simmoneau A, Sonzogni C, Sylvestre F (2019) Recent hydrological variability of the Moroccan Middle Atlas Mountains inferred from microscale sedimentological and geochemical analyses of lake sediments. Quat Res 91(1):414–430. CrossRefGoogle Scholar
  38. Kabbaj A, Zehyouhi L, Carlier P, Marcé A (1978) Contribution des isotopes du milieu à l’étude des aquifères du Maroc. In: Isotope Hydrology, vol II. IAEA, Wien, pp 491–524Google Scholar
  39. Khomsi K, Mahe G, Tramblay Y, Sinan M, Snoussi M (2016) Regional impacts of global change: Seasonal trends in extreme rainfall, run-off and temperature in two contrasting regions of Morocco. Nat Hazards Earth Syst Sci 16:1079–1090. CrossRefGoogle Scholar
  40. Krabbenhoft DP, Bowser CJ, Anderson MP, Valley JW (1990) Estimating groundwater exchange with lakes: 1. The stable isotope mass balance method. Water Resour Res 26:2445–2453. CrossRefGoogle Scholar
  41. Lamb HF, Gasse F, Benkaddour A, El Hamouti N, van der Kaars S, Perkins WT, Pearce NJ, Roberts CN (1995) Relation between century-scale Holocene arid intervals in tropical and temperate zones. Nature 373:134–137. CrossRefGoogle Scholar
  42. Legesse D, Vallet-Coulomb C, Gasse F (2004) Analysis of the hydrological response of a tropical terminal lake, Lake Abiyata (main Ethiopian rift valley) to changes in climate and human activities. Hydrol Process 18:487–504. CrossRefGoogle Scholar
  43. Lepoutre B, Martin J (1967) Le causse moyen atlasique. In: Congrès de pédologie méditerranéenne: excursion au Maroc. Les Cahiers de la Recherche Agronomique 24:207–226Google Scholar
  44. Lionello P, Abrantes F, Gacic M, Planton S, Trigo R, Ulbrich U (2014) The climate of the Mediterranean region: research progress and climate change impacts. Reg Environ Chang 14:1679–1684. CrossRefGoogle Scholar
  45. Martin J (1981) Le Moyen Atlas Central : Etude géomorphologique. Service Géologique du Maroc, Rabat 482 ppGoogle Scholar
  46. Merlivat L (1978) Molecular diffusivities of H[sub 2] [sup 16]O, HD[sup 16]O, and H[sub 2] [sup 18]O in gases. J Chem Phys 69:2864–2871. CrossRefGoogle Scholar
  47. Parker FL, Krenkel PA, Stevens DB (1970) Physical and engineering aspects of thermal pollution. C R C Crit Rev Environ Control 1:101–192. CrossRefGoogle Scholar
  48. Penman HL (1948) Natural evaporation from open water, bare soil and grass. Proc R Soc Lond A 193:120–145. CrossRefGoogle Scholar
  49. Rosenberry DO, Lewandowski J, Meinikmann K, Nützmann G (2015) Groundwater - the disregarded component in lake water and nutrient budgets. Part 1: Effects of groundwater on hydrology. Hydrol Process 29:2895–2921. CrossRefGoogle Scholar
  50. Sacks LA, Lee TM, Swancar A (2014) The suitability of a simplified isotope-balance approach to quantify transient groundwater-lake interactions over a decade with climatic extremes. J Hydrol 519:3042–3053. CrossRefGoogle Scholar
  51. Sayad A, Chakiri S (2010) Impact de l’évolution du climat sur le niveau de Dayet Aoua dans le Moyen Atlas marocain. Sécheresse 21:245–251. CrossRefGoogle Scholar
  52. Sayad A, Chakiri S, Martin C, Bejjaji Z, Echarfaoui H (2011) Effet des conditions climatiques sur le niveau du lac Sidi Ali (Moyen Atlas, Maroc). Physio-Géo 5:251–268. CrossRefGoogle Scholar
  53. Shuttleworth WJH (1992) Evaporation. In: Maidment DR (ed) Handbook of Hydrology. McGraw-Hill, New York, pp 4.1–4.53Google Scholar
  54. Steinman BA, Abbott MB, Nelson DB, Stansell ND, Finney BP, Bain DJ, Rosenmeier MF (2013) Isotopic and hydrologic responses of small, closed lakes to climate variability: comparison of measured and modeled lake level and sediment core oxygen isotope records. Geochim Cosmochim Acta 105:455–471. CrossRefGoogle Scholar
  55. Tramblay Y, El Adlouni S, Servat E (2013a) Trends and variability in extreme precipitation indices over maghreb countries. Nat Hazards Earth Syst Sci 13:3235–3248. CrossRefGoogle Scholar
  56. Tramblay Y, Ruelland D, Somot S, Bouaicha R, Servat E (2013b) High-resolution Med-CORDEX regional climate model simulations for hydrological impact studies: a first evaluation of the ALADIN-Climate model in Morocco. Hydrol Earth Syst Sci 17:3721–3739. CrossRefGoogle Scholar
  57. Troin M, Vallet-Coulomb C, Sylvestre F, Piovano E (2010) Hydrological modelling of a closed lake (Laguna Mar Chiquita, Argentina) in the context of 20th century climatic changes. J Hydrol 393:233–244. CrossRefGoogle Scholar
  58. Troin M, Vrac M, Khodri M, Caya D, Vallet-Coulomb C, Piovano E, Sylvestre F (2016) A complete hydro-climate model chain to investigate the influence of sea surface temperature on recent hydroclimatic variability in subtropical South America (Laguna Mar Chiquita, Argentina). Clim Dyn 46:1783–1798. CrossRefGoogle Scholar
  59. Vallet-Coulomb C, Gasse F, Robison L, Ferry L, Van Campo E, Chalié F (2006) Hydrological modeling of tropical closed Lake Ihotry (SW Madagascar): sensitivity analysis and implications for paleohydrological reconstructions over the past 4000 years. J Hydrol 331:257–271. CrossRefGoogle Scholar
  60. Vidal L, Rhoujjati A, Adallal R, Jouve G, Bard E, Benkaddour A, Chapron E, Courp T, Dezileau L, Garcia M, Hebert B, Simmoneau A, Sonzogni C, Sylvestre F, Tachikawa K, Vallet-Coulomb C, Viry E (2016) Past hydrological variability in the Moroccan Middle Atlas inferred from lakes and lacustrine sediments. In: Sabrié M-L, Gibert-Brunet E, Mourier T (eds) The Mediterranean Region under Climate Change. IRD, AllEnvi, pp 57–69CrossRefGoogle Scholar
  61. Yi Y, Brock BE, Falcone MD, Wolfe BB, Edwards TWD (2008) A coupled isotope tracer method to characterize input water to lakes. J Hydrol 350:1–13. CrossRefGoogle Scholar
  62. Zielhofer C, Fletcher WJ, Mischke S, De Batist M, Campbell JFE, Joannin S, Tjallingii R, El Hamouti N, Junginger A, Stele A, Bussmann J, Schneider B, Lauer T, Spitzer K, Strumpler M, Brachert T, Mikdad A (2017) Atlantic forcing of Western Mediterranean winter rain minima during the last 12,000 years. Quat Sci Rev 157:29–51. CrossRefGoogle Scholar
  63. Zielhofer C, Köhler A, Mischke S, Benkaddour A, Mikdad A, Fletcher WJ (2019) Western Mediterranean hydro-climatic consequences of Holocene ice-rafted debris (Bond) events. Clim Past 15:463–475. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Aix Marseille Univ, CNRS, IRD, INRA, Coll FranceCEREGEAix en Provence, cedex 4France
  2. 2.Laboratoire de Géo-ressources, Unité associée au CNRST (URAC 42), Faculté des Sciences et TechniquesUniversité Cadi AyyadMarrakechMorocco

Personalised recommendations