Advertisement

New land in the Neotropics: a review of biotic community, ecosystem, and landscape transformations in the face of climate and glacier change

  • Francisco CuestaEmail author
  • Luis D. LlambíEmail author
  • Christian Huggel
  • Fabian Drenkhan
  • William D. Gosling
  • Priscilla Muriel
  • Ricardo Jaramillo
  • Carolina Tovar
Review

Abstract

The high tropical Andes are rapidly changing due to climate change, leading to strong biotic community, ecosystem, and landscape transformations. While a wealth of glacier, water resource, and ecosystem-related research exists, an integrated perspective on the drivers and processes of glacier, landscape, and biota dynamics is currently missing. Here, we address this gap by presenting an interdisciplinary review that analyzes past, current, and potential future evidence on climate and glacier driven changes in landscape, ecosystem and biota at different spatial scales. We first review documented glacier changes and landscape evolution over past decades to millennia and analyze projected future glacier shrinkage until 2100 for two case studies in the tropical Andes. The effects of climate and glacier change on high Andean biota are then examined from paleoecological research and comparative gradient analyses to chronosequence and diachronic studies of vegetation dynamics. Our analysis indicates major twenty-first century landscape transformations with important socioecological implications which can be grouped into (i) formation of new lakes and drying of existing lakes as glaciers recede, (ii) alteration of hydrological dynamics in glacier-fed streams and high Andean wetlands, resulting in community composition changes, (iii) upward shifts of species and formation of new communities in deglaciated forefronts,(iv) potential loss of wetland ecosystems, and (v) eventual loss of alpine biota. We advocate strengthening an interdisciplinary research agenda with a strong policy formulation link that enables enhanced cross-sectorial cooperation and knowledge sharing, capacity building of relevant stakeholders, and a more active participation of both government agencies and social organizations.

Keywords

Tropical mountains Deglaciation Colonization High-Andean wetlands Primary succession Vegetation dynamics 

Notes

Acknowledgments

This study was developed in the framework of and supported by the Sustainable Mountain Development for Global Change (SMD4GC) Programme of the Swiss Agency for Development and Cooperation (SDC). Further support is acknowledged from the Proyecto Glaciares+, funded by SDC and implemented in collaboration with CARE Peru, and the project AguaFuturo funded by the Swiss National Science Foundation (project no. 205121L_166272). We furthermore thank Simone Schauwecker from University of Geneva, Andreas Linsbauer from University of Zurich, and the Unidad de Glaciología y Recursos Hídricos (UGRH) of the Autoridad Nacional de Agua (ANA), and the Instituto Nacional de Investigación en Glaciología y Ecosistemas de Montaña (INAIGEM) for data and information exchange. FC has also received additional funding to complete this study from the EcoAndes Project conducted by CONDESAN and UN-Environment, funded by the Global Environmental Fund (GEF) and from the Andean Forest Program funded by SDC. We thank the GLORIA-Andes network for the baseline data provided and all of their PIs: Rosa Isela Meneses, Julieta Carilla, Stephan Halloy, Karina Yager, Jorge Jácome, and Stephan Beck.

Supplementary material

10113_2019_1499_MOESM1_ESM.docx (96 kb)
ESM 1 (DOCX 96 kb)

References

  1. Abbott MB, Wolfe BB, Wolfe AP, Seltzer GO, Aravena R, Mark BG, Polissar PJ, Rodbell DT, Rowe HD, Vuille M (2003) Holocene paleohydrology and glacial history of the central Andes using multiproxy lake sediment studies. Palaeogeogr Palaeoclimatol Palaeoecol 194:123–138.  https://doi.org/10.1016/S0031-0182(03)00274-8 CrossRefGoogle Scholar
  2. Almeida JP, Montúfar R, Anthelme F (2013) Patterns and origin of intraspecific functional variability in a tropical alpine species along an altitudinal gradient. Plant Ecol Divers 6:423–433.  https://doi.org/10.1080/17550874.2012.702137 CrossRefGoogle Scholar
  3. Anthelme F, Buendia B, Mazoyer C, Dangles O (2012) Unexpected mechanisms sustain the stress gradient hypothesis in a tropical alpine environment. J Veg Sci 23:62–72.  https://doi.org/10.1111/j.1654-1103.2011.01333.x CrossRefGoogle Scholar
  4. Anthelme F, Cavieres LA, Dangles O (2014) Facilitation among plants in alpine environments in the face of climate change. Front Plant Sci 5:387.  https://doi.org/10.3389/fpls.2014.00387 CrossRefGoogle Scholar
  5. Anthelme F, Meneses RI, Valero NNH, Pozo P, Dangles O (2017) Fine nurse variations explain discrepancies in the stress-interaction relationship in alpine regions. Oikos 126:1173–1183.  https://doi.org/10.1111/oik.04248 CrossRefGoogle Scholar
  6. Baker PA, Rigsby CA, Seltzer GO, Fritz SC, Lowenstein TK, Bacher NP, Veliz C (2001) Tropical climate changes at millennial and orbital timescales on the Bolivian Altiplano. Nature 409:698.  https://doi.org/10.1038/35055524 CrossRefGoogle Scholar
  7. Baraer M, Mark BG, McKenzie JM, Condom T, Bury J, Huh K-I, Portocarrero C, Gómez J, Rathay S (2012) Glacier recession and water resources in Peru’s Cordillera Blanca. J Glaciol 58:134–150.  https://doi.org/10.3189/2012JoG11J186 CrossRefGoogle Scholar
  8. Bárcena TG, Finster KW, Yde JC (2011) Spatial patterns of soil development, methane oxidation, and methanotrophic diversity along a receding glacier forefield, Southeast Greenland. Arct Antarct Alp Res 43:178–188.  https://doi.org/10.1657/1938-4246-43.2.178 CrossRefGoogle Scholar
  9. Basantes-Serrano R, Rabatel A, Francou B, Vincent C, Maisincho L, CÁCeres B, Galarraga R, Alvarez D (2016) Slight mass loss revealed by reanalyzing glacier mass-balance observations on Glaciar Antisana 15α (inner tropics) during the 1995–2012 period. J Glaciol 62:124–136.  https://doi.org/10.1017/jog.2016.17 CrossRefGoogle Scholar
  10. Bell CD, Donoghue MJ (2005) Phylogeny and biogeography of Valerianaceae (Dipsacales) with special reference to the South American valerians. Org Divers Evol 5:147–159.  https://doi.org/10.1016/j.ode.2004.10.014 CrossRefGoogle Scholar
  11. Benavides JC (2014) The effect of drainage on organic matter accumulation and plant communities of high-altitude peatlands in the Colombian tropical Andes. Mires Peat 15:Article 01Google Scholar
  12. Benavides JC, Vitt DH, Wieder RK (2013) The influence of climate change on recent peat accumulation patterns of Distichia muscoides cushion bogs in the high-elevation tropical Andes of Colombia. J Geophys Res Biogeosci 118:1627–1635.  https://doi.org/10.1002/2013JG002419 CrossRefGoogle Scholar
  13. Bradley R, Vuille M, Diaz HF, Vergara W (2006) Threats to water supplies in the tropical Andes. Science 312:1755–1756.  https://doi.org/10.1126/science.1128087 CrossRefGoogle Scholar
  14. Braun C, Bezada M (2013) The history and disappearance of glaciers in Venezuela. J Lat Am Geogr:85–124Google Scholar
  15. Bueno A, Llambí LD, Wesche K (2015) Facilitation and edge effects influence vegetation regeneration in old-fields at the tropical Andean forest line. Appl Veg Sci 18:613–623.  https://doi.org/10.1111/avsc.12186 CrossRefGoogle Scholar
  16. Bury JT, Mark BG, McKenzie JM, French A, Baraer M, Huh KI, Luyo MAZ, López RJG (2011) Glacier recession and human vulnerability in the Yanamarey watershed of the Cordillera Blanca, Peru. Clim Chang 105:179–206CrossRefGoogle Scholar
  17. Bush, M.B. & Gosling, W.D. (2012) Environmental change in the humid tropics and monsoonal regions. The SAGE handbook of environmental change (ed. by J.A. Matthews, Bartlein, P.J., Briffa, K.R., Dawson, A.G., De Vernal, A., Denham, T., Fritz, S.C., & Oldfield, F.), pp. 113–140. SAGE, LondonGoogle Scholar
  18. Bush MB, Silman MR, Urrego DH (2004) 48,000 Years of climate and forest change in a biodiversity hot spot. Science 303:827–829.  https://doi.org/10.1126/science.1090795 CrossRefGoogle Scholar
  19. Bush MB, Barbara C, Hansen S, Rodbell DT, Seltzer GO, Young KR, León B, Abbott MB, Silman MR, Gosling WD (2005) A 17 000-year history of Andean climate and vegetation change from Laguna de Chochos, Peru. J Quat Sci 20:703–714.  https://doi.org/10.1002/jqs.983 CrossRefGoogle Scholar
  20. Buytaert W, De Bièvre B (2012) Water for cities: the impact of climate change and demographic growth in the tropical Andes. Water Resour Res 48.  https://doi.org/10.1029/2011WR011755
  21. Buytaert W, Célleri R, De Bièvre B, Cisneros F, Wyseure G, Deckers J, Hofstede R (2006) Human impact on the hydrology of the Andean páramos. Earth Sci Rev 79:53–72.  https://doi.org/10.1016/j.earscirev.2006.06.002 CrossRefGoogle Scholar
  22. Buytaert W, Cuesta-Camacho F, Tobón C (2011) Potential impacts of climate change on the environmental services of humid tropical alpine regions. Glob Ecol Biogeogr 20:19–33.  https://doi.org/10.1111/j.1466-8238.2010.00585.x CrossRefGoogle Scholar
  23. Buytaert W, Moulds S, Acosta L, De Bievre B, Olmos C, Villacis M, Tovar C, Verbist KM (2017) Glacial melt content of water use in the tropical Andes. Environ Res Lett 12:114014CrossRefGoogle Scholar
  24. Cáceres Y, Llambí LD, Rada F (2015) Shrubs as foundation species in a high tropical alpine ecosystem: a multi-scale analysis of plant spatial interactions. Plant Ecol Divers 8:147–161.  https://doi.org/10.1080/17550874.2014.960173 CrossRefGoogle Scholar
  25. Cárdenas ML, Gosling WD, Sherlock SC, Poole I, Pennington RT, Mothes P (2011) The response of vegetation on the Andean Flank in Western Amazonia to Pleistocene climate change. Science 331:1055–1058.  https://doi.org/10.1126/science.1197947 CrossRefGoogle Scholar
  26. Carey M, Molden OC, Rasmussen MB, Jackson M, Nolin AW, Mark BG (2017) Impacts of glacier recession and declining meltwater on mountain societies. Ann Am Assoc Geogr 107:350–359.  https://doi.org/10.1080/24694452.2016.1243039 CrossRefGoogle Scholar
  27. Carilla J, Halloy S, Cuello S, Grau A, Malizia A, Cuesta F (2018) Vegetation trends over eleven years on mountain summits in NW Argentina. Ecol Evol 8:11554–11567.  https://doi.org/10.1002/ece3.4602 CrossRefGoogle Scholar
  28. Cauvy-Fraunié S, Espinosa R, Andino P, Dangles O, Jacobsen D (2014) Relationships between stream macroinvertebrate communities and new flood-based indices of glacial influence. Freshw Biol 59:1916–1925.  https://doi.org/10.1111/fwb.12395 CrossRefGoogle Scholar
  29. Cauvy-Fraunié S, Espinosa R, Andino P, Jacobsen D, Dangles O (2015) Invertebrate metacommunity structure and dynamics in an Andean glacial stream network facing climate change. PLoS ONE 10:e0136793.  https://doi.org/10.1371/journal.pone.0136793 CrossRefGoogle Scholar
  30. Cauvy-Fraunié S, Andino P, Espinosa R, Calvez R, Jacobsen D, Dangles O (2016) Ecological responses to experimental glacier-runoff reduction in alpine rivers. Nat Commun 7:12025CrossRefGoogle Scholar
  31. Cazzolla Gatti R, Dudko A, Lim A, Velichevskaya AI, Lushchaeva IV, Pivovarova AV, Ventura S, Lumini E, Berruti A, Volkov IV (2018) The last 50 years of climate-induced melting of the Maliy Aktru glacier (Altai Mountains, Russia) revealed in a primary ecological succession. Ecol Evol 8:7401–7420.  https://doi.org/10.1002/ece3.4258 CrossRefGoogle Scholar
  32. Ceballos J, Tobón E, Arias M, Carvajal J, López O, Buitrago V, Valderrama J, Ramírez J (2008) Glaciares Santa Isabel y el Cocuy (Colombia): Seguimiento a su dinámica durante el período 2006–2008. Memorias del VII Encuentro Internacional de Investigadores del Grupo de Trabajo de Hielos y Nieves Andinos y del Caribe. Manizales, ColombiaGoogle Scholar
  33. Clapperton CM, Clapperton C (1993) Quaternary geology and geomorphology of South America. Elsevier, AmsterdamGoogle Scholar
  34. Clarke GKC, Jarosch AH, Anslow FS, Radić V, Menounos B (2015) Projected deglaciation of western Canada in the twenty-first century. Nat Geosci 8:372.  https://doi.org/10.1038/ngeo2407 CrossRefGoogle Scholar
  35. Cleef A (1979) The phytogeographical position of the neotropical vascular paramoflora with special reference to the Colombian Cordillera Oriental. In: Larsen K, Holm Nielsen LB (eds) Tropical botany. Academic Press, LondonGoogle Scholar
  36. Cleef AM (1981) The vegetation of the Paramos of the Colombian Cordillera Oriental. Dissertationes Botanicae 61Google Scholar
  37. Colonia D, Torres J, Haeberli W, Schauwecker S, Braendle E, Giraldez C, Cochachin A (2017) Compiling an inventory of glacier-bed overdeepenings and potential new lakes in de-glaciating areas of the Peruvian Andes: approach, first results, and perspectives for adaptation to climate change. Water 9:336.  https://doi.org/10.3390/w9050336 CrossRefGoogle Scholar
  38. Colwell RK (2009) Biodiversity: concepts, patterns, and measurement. The Princeton guide to ecology, 257–263Google Scholar
  39. Cuellar I (2017) Fitocolonización en la zona periglacial del glaciar Las Conejeras, en el volcán Nevado de Santa Isabel - Proyecto Piloto. In, p. 19. Instituto de Hidrología, Meteorología y Estudios Ambientales (IDEAM), BogotáGoogle Scholar
  40. Cuesta F, Muriel P, Llambí LD, Halloy S, Aguirre N, Beck S, Carilla J, Meneses RI, Cuello S, Grau A, Gámez LE, Irazábal J, Jácome J, Jaramillo R, Ramírez L, Samaniego N, Suárez-Duque D, Thompson N, Tupayachi A, Viñas P, Yager K, Becerra MT, Pauli H, Gosling WD (2017) Latitudinal and altitudinal patterns of plant community diversity on mountain summits across the tropical Andes. Ecography 40:1381–1394.  https://doi.org/10.1111/ecog.02567 CrossRefGoogle Scholar
  41. Cuesta F, Tovar C, Llambí LD, Gosling WD, Halloy S, Carilla J, Muriel P, Meneses RI, Beck S, Ulloa-Ulloa C, Yager K, Aguirre N, Viñas P, Jácome J, Suárez-Duque D, Pauli H (under review) Thermal niche traits of tropical high-elevation plant species and communities and their vulnerability to global warming along a 4000 km latitudinal gradient in the Andes. J BiogeogrGoogle Scholar
  42. D'Amico ME, Freppaz M, Filippa G, Zanini E (2014) Vegetation influence on soil formation rate in a proglacial chronosequence (Lys Glacier, NW Italian Alps). Catena 113:122–137.  https://doi.org/10.1016/j.catena.2013.10.001 CrossRefGoogle Scholar
  43. Dangles O, Rabatel A, Kraemer M, Zeballos G, Soruco A, Jacobsen D, Anthelme F (2017) Ecosystem sentinels for climate change? Evidence of wetland cover changes over the last 30 years in the tropical Andes. PLoS ONE 12:e0175814.  https://doi.org/10.1371/journal.pone.0175814 CrossRefGoogle Scholar
  44. Davey M, Blaalid R, Vik U, Carlsen T, Kauserud H, Eidesen PB (2015) Primary succession of Bistorta vivipara (L.) Delabre (Polygonaceae) root-associated fungi mirrors plant succession in two glacial chronosequences. Environ Microbiol 17:2777–2790.  https://doi.org/10.1111/1462-2920.12770 CrossRefGoogle Scholar
  45. Drenkhan F, Guardamino L, Huggel C, Frey H (2018) Current and future glacier and lake assessment in the deglaciating Vilcanota-Urubamba basin, Peruvian Andes. Glob Planet Chang 169:105–118.  https://doi.org/10.1016/j.gloplacha.2018.07.005 CrossRefGoogle Scholar
  46. Drenkhan F, Huggel C, Guardamino L, Haeberli W (2019) Managing risks and future options from new lakes in the deglaciating Andes of Peru: the example of the Vilcanota-Urubamba basin. Sci Total Environ 665:465–483.  https://doi.org/10.1016/j.scitotenv.2019.02.070 CrossRefGoogle Scholar
  47. Duchicela SA, Cuesta F, Pinto E, Gosling WD, Young KR (2019) Indicators for assessing tropical alpine rehabilitation practices. Ecosphere 10:e02595.  https://doi.org/10.1002/ecs2.2595 CrossRefGoogle Scholar
  48. Emmer A (2017) Geomorphologically effective floods from moraine-dammed lakes in the Cordillera Blanca, Peru. Quat Sci Rev 177:220–234.  https://doi.org/10.1016/j.quascirev.2017.10.028 CrossRefGoogle Scholar
  49. Emmer A, Klimeš J, Mergili M, Vilímek V, Cochachin A (2016) 882 lakes of the Cordillera Blanca: an inventory, classification, evolution and assessment of susceptibility to outburst floods. CATENA 147:269–279.  https://doi.org/10.1016/j.quascirev.2017.10.028 CrossRefGoogle Scholar
  50. Feeley KJ, Silman MR (2010) Biotic attrition from tropical forests correcting for truncated temperature niches. Glob Chang Biol 16:1830–1836.  https://doi.org/10.1111/j.1365-2486.2009.02085.x CrossRefGoogle Scholar
  51. Felde VA, Hooghiemstra H, Torres-Torres V, Birks HJB (2016) Detecting patterns of change in a long pollen-stratigraphical sequence from Funza, Colombia—a comparison of new and traditional numerical approaches. Rev Palaeobot Palynol 234:94–109.  https://doi.org/10.1016/j.revpalbo.2016.08.003 CrossRefGoogle Scholar
  52. Fjeldså J, Krabbe N (1990) Birds of the High Andes: a manual to the birds of the temperate zone of the Andes and Patagonia, South America. Zoological Museum, University of CopenhagenGoogle Scholar
  53. Flantua, S. & Hooghiemstra, H. (2018a) Historical connectivity and mountain biodiversity. Mountains, climate and biodiversity. (ed. by C. Hoorn, A. Perrigo and A. Antonelli), pp. 171–185. Wiley, ChichesterGoogle Scholar
  54. Flantua, S. & Hooghiemstra, H. (2018b) Historical connectivity and mountain biodiversity. Mountains, climate and biodiversity. Chichester: Wiley, 171–185Google Scholar
  55. Flantua, S.G.A., Hooghiemstra, H., van Boxel, J.H., Cabrera, M., González-Carranza, Z. & González-Arango, C. (2014) Connectivity dynamics since the Last Glacial Maximum in the northern Andes: a pollen-driven framework to assess potential migration. Monographs in systematic botany from the Missouri botanical garden (ed. by W.D. Stevens, O.M. Montiel and P.H. Raven), pp. 98–123. Missouri Botanical Garden Press, St. LouisGoogle Scholar
  56. Francou B, Ramirez E, Cáceres B, Mendoza J (2000) Glacier evolution in the tropical Andes during the last decades of the 20th century: Chacaltaya, Bolivia, and Antizana, Ecuador. AMBIO 29:416–422.  https://doi.org/10.1579/0044-7447-29.7.416 CrossRefGoogle Scholar
  57. Frans C, Istanbulluoglu E, Lettenmaier DP, Naz BS, Clarke GKC, Condom T, Burns P, Nolin AW (2015) Predicting glacio-hydrologic change in the headwaters of the Zongo River, Cordillera Real, Bolivia. Water Resour Res 51:9029–9052.  https://doi.org/10.1002/2014WR016728 CrossRefGoogle Scholar
  58. Gardelle J, Arnaud Y, Berthier E (2011) Contrasted evolution of glacial lakes along the Hindu Kush Himalaya mountain range between 1990 and 2009. Glob Planet Chang 75:47–55.  https://doi.org/10.1016/j.gloplacha.2010.10.003 CrossRefGoogle Scholar
  59. Garreaud R, Vuille M, Clement AC (2003) The climate of the Altiplano: observed current conditions and mechanisms of past changes. Palaeogeogr Palaeoclimatol Palaeoecol 194:5–22.  https://doi.org/10.1016/S0031-0182(03)00269-4 CrossRefGoogle Scholar
  60. González-Carranza Z, Hooghiemstra H, Vélez MI (2012) Major altitudinal shifts in Andean vegetation on the Amazonian flank show temporary loss of biota in the Holocene. The Holocene 22:1227–1241.  https://doi.org/10.1177/0959683612451183 CrossRefGoogle Scholar
  61. Graae BJ, Vandvik V, Armbruster WS, Eiserhardt WL, Svenning J-C, Hylander K, Ehrlén J, Speed JDM, Klanderud K, Bråthen KA, Milbau A, Opedal ØH, Alsos IG, Ejrnæs R, Bruun HH, Birks HJB, Westergaard KB, Birks HH, Lenoir J (2018) Stay or go—how topographic complexity influences alpine plant population and community responses to climate change. Perspect Plant Ecol Evol Syst 30:41–50.  https://doi.org/10.1016/j.ppees.2017.09.008 CrossRefGoogle Scholar
  62. Gray AJ, Crawley MJ, Edwards PJ (1987) Colonization, succession, and stability : the 26th Symposium of the British Ecological Society held jointly with the Linnean Society of London. Blackwell Scientific Publications, OxfordGoogle Scholar
  63. Haeberli W, Hoelzle M, Paul F, Zemp M (2007) Integrated monitoring of mountain glaciers as key indicators of global climate change: the European Alps. Ann Glaciol 46:150–160.  https://doi.org/10.3189/172756407782871512 CrossRefGoogle Scholar
  64. Haeberli W, Schaub Y, Huggel C (2017) Increasing risks related to landslides from degrading permafrost into new lakes in de-glaciating mountain ranges. Geomorphology 293:405–417.  https://doi.org/10.1016/j.geomorph.2016.02.009 CrossRefGoogle Scholar
  65. Hall ML, Samaniego P, Le Pennec JL, Johnson JB (2008) Ecuadorian Andes volcanism: a review of Late Pliocene to present activity. J Volcanol Geotherm Res 176:1–6.  https://doi.org/10.1016/j.jvolgeores.2008.06.012 CrossRefGoogle Scholar
  66. Hanshaw M, Bookhagen B (2014) Glacial areas, lake areas, and snow lines from 1975 to 2012: status of the Cordillera Vilcanota, including the Quelccaya Ice Cap, northern central Andes, Peru. Cryosphere 8:359–376.  https://doi.org/10.5194/tc-8-359-2014 CrossRefGoogle Scholar
  67. Harden CP, Hartsig J, Farley KA, Lee J, Bremer LL (2013) Effects of land-use change on water in Andean Páramo Grassland Soils. Ann Assoc Am Geogr 103:375–384.  https://doi.org/10.1080/00045608.2013.754655 CrossRefGoogle Scholar
  68. He L, Tang Y (2008) Soil development along primary succession sequences on moraines of Hailuogou Glacier, Gongga Mountain, Sichuan, China. Catena 72:259–269.  https://doi.org/10.1016/j.catena.2007.05.010 CrossRefGoogle Scholar
  69. Heine, K. (2011) Chapter 57 - Late Quaternary glaciations of Ecuador. Developments in Quaternary Sciences (ed. by J. Ehlers, P.L. Gibbard and P.D. Hughes), pp. 803–813. ElsevierGoogle Scholar
  70. Hillyer R, Silman MR (2010) Changes in species interactions across a 2.5 km elevation gradient: effects on plant migration in response to climate change. Glob Chang Biol 16:3205–3214.  https://doi.org/10.1111/j.1365-2486.2010.02268.x CrossRefGoogle Scholar
  71. Hooghiemstra, H. & Cleef, A.M. (1995) Pleistocene climatic change and environmental and generic dynamics in the North Andean montane forest and paramo. Biodiversity and Conservation of Neotropical Montane Forests, pp. 35–49. The New York Botanical GardenGoogle Scholar
  72. Hooghiemstra H, van der Hammen T (2004) Quaternary ice-age dynamics in the Colombian Andes: developing an understanding of our legacy. Philos Trans Biol Sci 359:173–181.  https://doi.org/10.1098/rstb.2003.1420 CrossRefGoogle Scholar
  73. Hooghiemstra H, Wijninga VM, Cleef AM (2006) The paleobotanical record of Colombia: implications for biogeography and biodiversity. Ann Mo Bot Gard 93:297–325. https://doi.org/10.3417/0026-6493(2006)93[297:TPROCI]2.0.CO;2Google Scholar
  74. Hribljan JA, Suárez E, Heckman KA, Lilleskov EA, Chimner RA (2016) Peatland carbon stocks and accumulation rates in the Ecuadorian páramo. Wetl Ecol Manag 24:113–127.  https://doi.org/10.1007/s11273-016-9482-2 CrossRefGoogle Scholar
  75. Hughes C, Eastwood R (2006) Island radiation on a continental scale: Exceptional rates of plant diversification after uplift of the Andes. Proc Natl Acad Sci 103:10334–10339.  https://doi.org/10.1073/pnas.0601928103 CrossRefGoogle Scholar
  76. Hughes PD, Gibbard PL (2015) A stratigraphical basis for the Last Glacial Maximum (LGM). Quat Int 383:174–185.  https://doi.org/10.1016/j.quaint.2014.06.006 CrossRefGoogle Scholar
  77. Hupp N, Llambí LD, Ramírez L, Callaway RM (2017) Alpine cushion plants have species–specific effects on microhabitat and community structure in the tropical Andes. J Veg Sci 28:928–938.  https://doi.org/10.1111/jvs.12553 CrossRefGoogle Scholar
  78. Huston MA (1994) Biological diversity: the coexistence of species on changing landscapes. Cambridge University Press, CambridgeGoogle Scholar
  79. IDEAM, Instituto Alexander von Humboldt, CONDESAN (2018) Propuesta: Estrategia para monitoreo integrado de los ecosistemas de alta montaña en Colombia. Bogotá, ColombiaGoogle Scholar
  80. INAIGEM (2018) Inventario Nacional de Glaciares - Las Cordilleras Glaciares del Perú. Huaraz. In. El Instituto Nacional de Investigación en Glaciares y Ecosistemas de Montaña, LimaGoogle Scholar
  81. Jacobsen D, Milner AM, Brown LE, Dangles O (2012) Biodiversity under threat in glacier-fed river systems. Nat Clim Chang 2:361–364.  https://doi.org/10.1038/nclimate1435 CrossRefGoogle Scholar
  82. Jomelli V, Favier V, Rabatel A, Brunstein D, Hoffmann G, Francou B (2009) Fluctuations of glaciers in the tropical Andes over the last millennium and palaeoclimatic implications: a review. Palaeogeogr Palaeoclimatol Palaeoecol 281:269–282.  https://doi.org/10.1016/j.palaeo.2008.10.033 CrossRefGoogle Scholar
  83. Jomelli V, Khodri M, Favier V, Brunstein D, Ledru M-P, Wagnon P, Blard P-H, Sicart J-E, Braucher R, Grancher D, Bourlès DL, Braconnot P, Vuille M (2011) Irregular tropical glacier retreat over the Holocene epoch driven by progressive warming. Nature 474:196.  https://doi.org/10.1038/nature10150 CrossRefGoogle Scholar
  84. Josse, C., Cuesta, F., Navarro, G., Barrena, V., Becerra, M.T., Cabrera, E., Chacón-Moreno, E., Ferreira, W., Peralvo, M. & Saito, J. (2011) Physical geography and ecosystems in the tropical Andes. Climate change and biodiversity in the tropical Andes (ed. by S.K. Herzog, R. Martínez, P.M. Jørgensen and H. Tiessen), pp. 152–169. Inter-American Institute for Global Change Research (IAI) and Scientific Committee on Problems of the Environment (SCOPE), BrasiliaGoogle Scholar
  85. Kaser G (1999) A review of the modern fluctuations of tropical glaciers. Glob Planet Chang 22:93–103.  https://doi.org/10.1016/S0921-8181(99)00028-4 CrossRefGoogle Scholar
  86. Kattan GH, Franco P, Rojas V, Morales G (2004) Biological diversification in a complex region: a spatial analysis of faunistic diversity and biogeography of the Andes of Colombia. J Biogeogr 31:1829–1839.  https://doi.org/10.1111/j.1365-2699.2004.01109.x CrossRefGoogle Scholar
  87. Kinouchi T, Nakajima T, Mendoza J, Fuchs P, Asaoka Y (2019) Water security in high mountain cities of the Andes under a growing population and climate change: a case study of La Paz and El Alto, Bolivia. Water Security 6:100025.  https://doi.org/10.1016/j.wasec.2019.100025 CrossRefGoogle Scholar
  88. Kraaijenbrink PDA, Bierkens MFP, Lutz AF, Immerzeel WW (2017) Impact of a global temperature rise of 1.5 degrees Celsius on Asia’s glaciers. Nature 549:257.  https://doi.org/10.1038/nature23878 CrossRefGoogle Scholar
  89. La Frenierre J, Mark BG (2017) Detecting patterns of climate change at Volcán Chimborazo, Ecuador, by Integrating Instrumental Data, Public Observations, and Glacier Change Analysis. Ann Am Assoc Geogr 107:979–997.  https://doi.org/10.1080/24694452.2016.1270185 CrossRefGoogle Scholar
  90. Lamprecht A, Semenchuk PR, Steinbauer K, Winkler M, Pauli H (2018) Climate change leads to accelerated transformation of high-elevation vegetation in the central Alps. New Phytol 220:447–459.  https://doi.org/10.1111/nph.15290 CrossRefGoogle Scholar
  91. Lindenmayer DB, Piggott MP, Wintle BA (2013) Counting the books while the library burns: why conservation monitoring programs need a plan for action. Front Ecol Environ 11:549–555.  https://doi.org/10.1890/120220 CrossRefGoogle Scholar
  92. Linsbauer A, Paul F, Haeberli W (2012) Modeling glacier thickness distribution and bed topography over entire mountain ranges with GlabTop: application of a fast and robust approach. J Geophys Res Earth Surf 117(F3).  https://doi.org/10.1029/2011JF002313
  93. Linsbauer A, Frey H, Haeberli W, Machguth H, Azam MF, Allen S (2016) Modelling glacier-bed overdeepenings and possible future lakes for the glaciers in the Himalaya—Karakoram region. Ann Glaciol 57:119–130.  https://doi.org/10.3189/2016AoG71A627 CrossRefGoogle Scholar
  94. Llambí LD, Cuesta F (2014) La diversidad de los páramos andinos en el espacio y en el tiempo. In: Cuesta F, Sevink J, Llambí LD, De Bièvre B, Posner J (eds) Avances en investigación para la conservación de los páramos andinos. CONDESAN, Universidad de Ámsterdam, ICAE-Universidad de Los Andes, Universidad de Wisconsin, Lima, pp 8–38Google Scholar
  95. Lortie CJ, Brooker RW, Choler P, Kikvidze Z, Michalet R, Pugnaire FI, Callaway RM (2004) Rethinking plant community theory. Oikos 107:433–438.  https://doi.org/10.1111/j.0030-1299.2004.13250.x CrossRefGoogle Scholar
  96. Loza Herrera S, Meneses RI, Anthelme F (2015) Comunidades vegetales de los bofedales de la Cordillera Real (Bolivia) bajo el calentamiento global. Ecología en Bolivia 50:39–56Google Scholar
  97. Madriñán S, Cortés AJ, Richardson JE (2013) Páramo is the world’s fastest evolving and coolest biodiversity hotspot. Front Genet 4:192.  https://doi.org/10.3389/fgene.2013.00192 CrossRefGoogle Scholar
  98. Magrin GO, Marengo JA, Boulanger J-P et al (2014) Central and South America. In: Barros VR, Field CB, Dokken DJ et al (eds) Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel of Climate Change. Cambridge University Press, Cambridge, pp 1499–1566Google Scholar
  99. Manciati C, Villacís M, Taupin J-D, Cadier E, Galárraga-Sánchez R, Cáceres B (2014) Empirical mass balance modelling of South American tropical glaciers: case study of Antisana volcano, Ecuador. Hydrol Sci J 59:1519–1535.  https://doi.org/10.1080/02626667.2014.888490 CrossRefGoogle Scholar
  100. Mark BG (2008) Tracing tropical Andean glaciers over space and time: some lessons and transdisciplinary implications. Glob Planet Chang 60:101–114.  https://doi.org/10.1016/j.gloplacha.2006.07.032 CrossRefGoogle Scholar
  101. Mark BG, Seltzer GO, Rodbell DT, Goodman AY (2002) Rates of deglaciation during the last glaciation and holocene in the Cordillera Vilcanota-Quelccaya Ice Cap Region, Southeastern Perú. Quat Res 57:287–298.  https://doi.org/10.1006/qres.2002.2320 CrossRefGoogle Scholar
  102. Mark BG, French A, Baraer M, Carey M, Bury J, Young KR, Polk MH, Wigmore O, Lagos P, Crumley R (2017) Glacier loss and hydro-social risks in the Peruvian Andes. Glob Planet Chang 159:61–76.  https://doi.org/10.1016/j.gloplacha.2017.10.003 CrossRefGoogle Scholar
  103. Melcher IM, Bouman F, Cleef AM (2000) Seed Dispersal in Páramo Plants: Epizoochorous and Hydrochorous Taxa. Plant Biol 2:40–52CrossRefGoogle Scholar
  104. Mittermeier, R.A., Turner, W.R., Larsen, F.W., Brooks, T.M. & Gascon, C. (2011) Global biodiversity conservation: the critical role of hotspots. Biodiversity hotspots: distribution and protection of conservation priority areas (ed. by F.E. Zachos and J.C. Habel), pp. 3–22. Springer BerlinGoogle Scholar
  105. Morán-Tejeda E, Ceballos JL, Peña K, Lorenzo-Lacruz J, López-Moreno JI (2018) Recent evolution and associated hydrological dynamics of a vanishing tropical Andean glacier: Glaciar de Conejeras, Colombia. Hydrol Earth Syst Sci 22:5445–5461CrossRefGoogle Scholar
  106. Moret P, Aráuz MÁ, Gobbi M, Barragán Á (2016) Climate warming effects in the tropical Andes: first evidence for upslope shifts of Carabidae (Coleoptera) in Ecuador. Insect Conserv Divers 9:342–350.  https://doi.org/10.1111/icad.12173 CrossRefGoogle Scholar
  107. Morueta-Holme N, Engemann K, Sandoval-Acuña P, Jonas JD, Segnitz RM, Svenning J-C (2015) Strong upslope shifts in Chimborazo’s vegetation over two centuries since Humboldt. Proc Natl Acad Sci 112:12741–12745.  https://doi.org/10.1073/pnas.1509938112 CrossRefGoogle Scholar
  108. Mosblech NAS, Bush MB, Gosling WD, Hodell D, Thomas L, van Calsteren P, Correa-Metrio A, Valencia BG, Curtis J, van Woesik R (2012) North Atlantic forcing of Amazonian precipitation during the last ice age. Nat Geosci 5:817.  https://doi.org/10.1038/ngeo1588 CrossRefGoogle Scholar
  109. Moscol Olivera MC, Hooghiemstra H (2010) Three millennia upper forest line changes in northern Ecuador: Pollen records and altitudinal vegetation distributions. Rev Palaeobot Palynol 163:113–126.  https://doi.org/10.1016/j.revpalbo.2010.10.003 CrossRefGoogle Scholar
  110. Mothes PA, Hall ML (2008) The plinian fallout associated with Quilotoa's 800 yr BP eruption, Ecuadorian Andes. J Volcanol Geotherm Res 176:56–69.  https://doi.org/10.1016/j.jvolgeores.2008.05.018 CrossRefGoogle Scholar
  111. Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858.  https://doi.org/10.1038/35002501 CrossRefGoogle Scholar
  112. Nolan C, Overpeck JT, Allen JRM, Anderson PM, Betancourt JL, Binney HA, Brewer S, Bush MB, Chase BM, Cheddadi R, Djamali M, Dodson J, Edwards ME, Gosling WD, Haberle S, Hotchkiss SC, Huntley B, Ivory SJ, Kershaw AP, Kim S-H, Latorre C, Leydet M, Lézine A-M, Liu K-B, Liu Y, Lozhkin AV, McGlone MS, Marchant RA, Momohara A, Moreno PI, Müller S, Otto-Bliesner BL, Shen C, Stevenson J, Takahara H, Tarasov PE, Tipton J, Vincens A, Weng C, Xu Q, Zheng Z, Jackson ST (2018) Past and future global transformation of terrestrial ecosystems under climate change. Science 361:920–923.  https://doi.org/10.1126/science.aan5360 CrossRefGoogle Scholar
  113. Ortuño T, Beck S, Sarmiento L (2006) Dinámica sucesional de la vegetación en un sistema agrícola con descanso largo en el Altiplano central boliviano. Ecología en Bolivia 41:40–70Google Scholar
  114. Pauli H, Gottfried M, Dullinger S, Abdaladze O, Akhalkatsi M, Alonso JLB, Coldea G, Dick J, Erschbamer B, Calzado RF, Ghosn D, Holten JI, Kanka R, Kazakis G, Kollár J, Larsson P, Moiseev P, Moiseev D, Molau U, Mesa JM, Nagy L, Pelino G, Puşcaş M, Rossi G, Stanisci A, Syverhuset AO, Theurillat J-P, Tomaselli M, Unterluggauer P, Villar L, Vittoz P, Grabherr G (2012) Recent Plant Diversity Changes on Europe’s Mountain Summits. Science 336:353–355.  https://doi.org/10.1126/science.1219033 CrossRefGoogle Scholar
  115. Peduzzi P, Herold C, Silverio W (2010) Assessing high altitude glacier thickness, volume and area changes using field, GIS and remote sensing techniques: the case of Nevado Coropuna (Peru). Cryosphere 4:313–323CrossRefGoogle Scholar
  116. Pérez FL (1995) Plant-induced spatial patterns of surface soil properties near caulescent Andean rosettes. Geoderma 68:101–121.  https://doi.org/10.1016/0016-7061(95)00028-M CrossRefGoogle Scholar
  117. Perry LB, Seimon A, Andrade-Flores MF, Endries JL, Yuter SE, Velarde F, Arias S, Bonshoms M, Burton EJ, Winkelmann IR, Cooper CM, Mamani G, Rado M, Montoya N, Quispe N (2017) Characteristics of precipitating storms in glacierized tropical Andean Cordilleras of Peru and Bolivia. Ann Am Assoc Geogr 107:309–322.  https://doi.org/10.1080/24694452.2016.1260439 CrossRefGoogle Scholar
  118. Pestalozzi H (2000) Sectoral fallow systems and the management of soil fertility: the rationality of indigenous knowledge in the high Andes of Bolivia. Mt Res Dev 20:64–72. https://doi.org/10.1659/0276-4741(2000)020[0064:SFSATM]2.0.CO;2Google Scholar
  119. Polk MH (2016) “They are drying out”: social-ecological consequences of glacier recession on mountain peatlands in Huascarán National Park, Peru. The University of Texas at Austin, AustinGoogle Scholar
  120. Polk MH, Young KR, Baraer M, Mark BG, McKenzie JM, Bury J, Carey M (2017) Exploring hydrologic connections between tropical mountain wetlands and glacier recession in Peru's Cordillera Blanca. Appl Geogr 78:94–103.  https://doi.org/10.1016/j.apgeog.2016.11.004 CrossRefGoogle Scholar
  121. Rabatel A, Francou B, Jomelli V, Naveau P, Grancher D (2008) A chronology of the Little Ice Age in the tropical Andes of Bolivia (16°S) and its implications for climate reconstruction. Quat Res 70:198–212.  https://doi.org/10.1016/j.yqres.2008.02.012 CrossRefGoogle Scholar
  122. Rabatel A, Francou B, Soruco A, Gomez J, Cáceres B, Ceballos JL, Basantes R, Vuille M, Sicart J-E, Huggel C (2012) Current state of glaciers in the tropical Andes: a multi-century perspective on glacier evolution and climate change. Cryosphere 7:81–102.  https://doi.org/10.5194/tc-7-81-2013 CrossRefGoogle Scholar
  123. Rabatel A, Francou B, Soruco A, Gomez J, Caceres B et al (2013) Current state of glaciers in the tropical Andes: a multi-century perspective on glacier evolution and climate change. Cryosphere 7:81–102.  https://doi.org/10.5194/tc-7-81-2013 CrossRefGoogle Scholar
  124. Rabatel A, Ceballos JL, Micheletti N, Jordan E, Braitmeier M, González J, Mölg N, Ménégoz M, Huggel C, Zemp M (2018) Toward an imminent extinction of Colombian glaciers? Geogr Ann A Phys Geogr 100:75–95.  https://doi.org/10.1080/04353676.2017.1383015 CrossRefGoogle Scholar
  125. Radić V, Hock R (2011) Regionally differentiated contribution of mountain glaciers and ice caps to future sea-level rise. Nat Geosci 4:91.  https://doi.org/10.1038/ngeo1052 CrossRefGoogle Scholar
  126. Ramirez-Villegas J, Cuesta F, Devenish C, Peralvo M, Jarvis A, Arnillas CA (2014) Using species distributions models for designing conservation strategies of Tropical Andean biodiversity under climate change. J Nat Conserv 22:391–404.  https://doi.org/10.1016/j.jnc.2014.03.007 CrossRefGoogle Scholar
  127. Rangel TF, Edwards NR, Holden PB, Diniz-Filho JAF, Gosling WD, Coelho MTP, Cassemiro FAS, Rahbek C, Colwell RK (2018) Modeling the ecology and evolution of biodiversity: biogeographical cradles, museums, and graves. Science 361.  https://doi.org/10.1126/science.aar5452
  128. Rehm EM, Feeley KJ (2015) The inability of tropical cloud forest species to invade grasslands above treeline during climate change: potential explanations and consequences. Ecography 38:1167–1175.  https://doi.org/10.1111/ecog.01050 CrossRefGoogle Scholar
  129. Réveillet M, Rabatel A, Gillet-Chaulet F, Soruco A (2015) Simulations of changes to Glaciar Zongo, Bolivia (16° S), over the 21st century using a 3-D full-Stokes model and CMIP5 climate projections. Ann Glaciol 56:89–97.  https://doi.org/10.3189/2015AoG70A113 CrossRefGoogle Scholar
  130. Rundel PW, Palma B (2000) Preserving the Unique Puna Ecosystems of the Andean Altiplano. Mt Res Dev 20:262–271. https://doi.org/10.1659/0276-4741(2000)020[0262:PTUPEO]2.0.CO;2Google Scholar
  131. Salzmann N, Machguth H, Linsbauer A (2012) The Swiss Alpine glaciers’ response to the global ‘2 °C air temperature target’. Environ Res Lett 7:044001.  https://doi.org/10.1088/1748-9326/7/4/044001 CrossRefGoogle Scholar
  132. Salzmann N, Huggel C, Rohrer M, Silverio W, Mark BG, Burns P, Portocarrero C (2013) Glacier changes and climate trends derived from multiple sources in the data scarce Cordillera Vilcanota region, southern Peruvian Andes. Cryosphere 7:103–118.  https://doi.org/10.5194/tc-7-103-2013 CrossRefGoogle Scholar
  133. Sarmiento L, Monasterio M, Montilla M (1993) Ecological bases, sustainability, and current trends in traditional agriculture in the Venezuelan high Andes. Mt Res Dev:167–176.  https://doi.org/10.2307/3673634
  134. Sarmiento L, Llambí LD, Escalona A, Marquez N (2003) Vegetation patterns, regeneration rates and divergence in an old-field succession of the high tropical Andes. Plant Ecol 166:145–156.  https://doi.org/10.1023/a:1023262724696 CrossRefGoogle Scholar
  135. Sarmiento L, Smith JK, Márquez N, Escalona A, Erazo MC (2015) Constraints for the restoration of tropical alpine vegetation on degraded slopes of the Venezuelan Andes. Plant Ecol Divers 8:277–291.  https://doi.org/10.1080/17550874.2014.898163 CrossRefGoogle Scholar
  136. Schauwecker S, Rohrer M, Acuña D, Cochachin A, Dávila L, Frey H, Giráldez C, Gómez J, Huggel C, Jacques-Coper M (2014) Climate trends and glacier retreat in the Cordillera Blanca, Peru, revisited. Glob Planet Chang 119:85–97.  https://doi.org/10.1016/j.gloplacha.2014.05.005  https://doi.org/10.1002/2016JD025943
  137. Schauwecker S, Rohrer M, Huggel C, Endries J, Montoya N, Neukom R, Perry B, Salzmann N, Schwarb M, Suarez W (2017) The freezing level in the tropical Andes, Peru: an indicator for present and future glacier extents. J Geophys Res-Atmos 122:5172–5189.  https://doi.org/10.1002/2016JD025943 CrossRefGoogle Scholar
  138. Schubert C, Clapperton CM (1990) Quaternary Glaciations in the northern Andes (Venezuela, Colombia and Ecuador). Quat Sci Rev 9:123–135.  https://doi.org/10.1016/0277-3791(90)90014-2 CrossRefGoogle Scholar
  139. Seimon TA, Seimon A, Daszak P, Halloy SRP, Schloegel LM, Aguilar CA, Sowell P, Hyatt AD, Konecky B, Simmons E, J. (2007) Upward range extension of Andean anurans and chytridiomycosis to extreme elevations in response to tropical deglaciation. Glob Chang Biol 13:288–299.  https://doi.org/10.1111/j.1365-2486.2006.01278.x CrossRefGoogle Scholar
  140. Seimon TA, Seimon A, Yager K, Reider K, Delgado A, Sowell P, Tupayachi A, Konecky B, McAloose D, Halloy S (2017) Long-term monitoring of tropical alpine habitat change, Andean anurans, and chytrid fungus in the Cordillera Vilcanota, Peru: Results from a decade of study. Ecol Evol 7:1527–1540.  https://doi.org/10.1002/ece3.2779 CrossRefGoogle Scholar
  141. Sklenář P (2006) Searching for Altitudinal Zonation: Species Distribution and Vegetation Composition in the Superpáramo of Volcán Iliniza, Ecuador. Plant Ecol 184:337–350.  https://doi.org/10.1007/s11258-005-9077-0 CrossRefGoogle Scholar
  142. Sklenář P, Balslev H (2005) Superpáramo plant species diversity and phytogeography in Ecuador. Flora - Morphology, Distribution, Functional Ecology of Plants 200:416–433.  https://doi.org/10.1016/j.flora.2004.12.006 CrossRefGoogle Scholar
  143. Sklenár P, Ramsay PM (2001) Diversity of zonal páramo plant communities in Ecuador. Divers Distrib 7:113–124.  https://doi.org/10.1046/j.1472-4642.2001.00101.x CrossRefGoogle Scholar
  144. Sklenář P, Kovář P, Palice Z, Stančík D, Soldán Z (2010) Primary succession of high-altitude Andean vegetation on lahars of Volcán Cotopaxi, Ecuador. Phytocoenologia 40:15–28.  https://doi.org/10.1127/0340-269X/2010/0040-0442 CrossRefGoogle Scholar
  145. Sklenář P, Dušková E, Balslev H (2011) Tropical and temperate: evolutionary history of Páramo Flora. Bot Rev 77:71–108.  https://doi.org/10.1007/s12229-010-9061-9 CrossRefGoogle Scholar
  146. Sklenář P, Kučerová A, Macková J, Romoleroux K (2016) Temperature microclimates of plants in a tropical alpine environment: how much does growth form matter? Arct Antarct Alp Res 48:61–78.  https://doi.org/10.1657/AAAR0014-084 CrossRefGoogle Scholar
  147. Solomina O, Jomelli V, Kaser G, Ames A, Berger B, Pouyaud B (2007) Lichenometry in the Cordillera Blanca, Peru: “Little Ice Age” moraine chronology. Glob Planet Chang 59:225–235.  https://doi.org/10.1016/j.gloplacha.2006.11.016 CrossRefGoogle Scholar
  148. Steinbauer MJ, Grytnes J-A, Jurasinski G, Kulonen A, Lenoir J, Pauli H, Rixen C, Winkler M, Bardy-Durchhalter M, Barni E, Bjorkman AD, Breiner FT, Burg S, Czortek P, Dawes MA, Delimat A, Dullinger S, Erschbamer B, Felde VA, Fernández-Arberas O, Fossheim KF, Gómez-García D, Georges D, Grindrud ET, Haider S, Haugum SV, Henriksen H, Herreros MJ, Jaroszewicz B, Jaroszynska F, Kanka R, Kapfer J, Klanderud K, Kühn I, Lamprecht A, Matteodo M, di Cella UM, Normand S, Odland A, Olsen SL, Palacio S, Petey M, Piscová V, Sedlakova B, Steinbauer K, Stöckli V, Svenning J-C, Teppa G, Theurillat J-P, Vittoz P, Woodin SJ, Zimmermann NE, Wipf S (2018) Accelerated increase in plant species richness on mountain summits is linked to warming. Nature 556:231–234CrossRefGoogle Scholar
  149. Suárez E, Orndahl K, Goodwin K (2015) Lava flows and moraines as corridors for early plant colonization of glacier forefronts on tropical volcanoes. Biotropica 47:645–649.  https://doi.org/10.1111/btp.12260 CrossRefGoogle Scholar
  150. Thompson LG, Davis ME, Mosley-Thompson E, Lin P-N, Henderson KA, Mashiotta TA (2005) Tropical ice core records: evidence for asynchronous glaciation on Milankovitch timescales. J Quat Sci 20:723–733.  https://doi.org/10.1002/jqs.972 CrossRefGoogle Scholar
  151. Thompson LG, Mosley-Thompson E, Brecher H, Davis M, León B, Les D, Lin P-N, Mashiotta T, Mountain K (2006) Abrupt tropical climate change: past and present. Proc Natl Acad Sci 103:10536–10543.  https://doi.org/10.1073/pnas.0603900103 CrossRefGoogle Scholar
  152. Thompson LG, Mosley-Thompson E, Davis ME, Brecher HH (2011) Tropical glaciers, recorders and indicators of climate change, are disappearing globally. Ann Glaciol 52:23–34.  https://doi.org/10.3189/172756411799096231 CrossRefGoogle Scholar
  153. Thompson LG, Mosley-Thompson E, Davis ME, Zagorodnov VS, Howat IM, Mikhalenko VN, Lin P-N (2013) Annually resolved ice core records of tropical climate variability over the past ~1800 years. Science 340:945–950.  https://doi.org/10.1126/science.1234210 CrossRefGoogle Scholar
  154. Tovar C, Arnillas CA, Cuesta F, Buytaert W (2013) Diverging responses of tropical Andean biomes under future climate conditions. PLoS ONE 8:e63634.  https://doi.org/10.1371/journal.pone.0063634 CrossRefGoogle Scholar
  155. Urbina JC, Benavides JC (2015) Simulated small scale disturbances increase decomposition rates and facilitates invasive species encroachment in a high elevation tropical Andean peatland. Biotropica 47:143–151.  https://doi.org/10.1111/btp.12191 CrossRefGoogle Scholar
  156. Valencia BG, Bush MB, Coe AL, Orren E, Gosling WD (2018) Polylepis woodland dynamics during the last 20,000 years. J Biogeogr 45:1019–1030.  https://doi.org/10.1111/jbi.13209 CrossRefGoogle Scholar
  157. Van Der Hammen T (1974) The Pleistocene changes of vegetation and climate in tropical South America. J Biogeogr 1:3–26.  https://doi.org/10.2307/3038066 CrossRefGoogle Scholar
  158. van der Hammen, T. & Cleef, A.M. (1986) Development of the high Andean páramo flora and vegetation. High altitude tropical biogeography (ed. by F. Vuilleumier, Monasterio, M.), pp. 153–201. Oxford University Press, New YorkGoogle Scholar
  159. Vaughan DG, Comiso JC, Allison I, Carrasco J, Kaser G, Kwok R, Mote P, Murray T, Paul F, Ren J, Rignot E, Solomina O, Steffen K, Zhang T (2013) Observations: cryosphere. In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 317–382Google Scholar
  160. Vergara W, Deeb A, Valencia A, Haeussling S, Zarzar A, Bradley R, Francou B (2009) The Potential consequences of rapid glacier retreat in the Northern Andes. Walter Vergara (Comp.), Assessing the Potential Consequences of Climate Destabilization in Latin America 61Google Scholar
  161. Villota A, Behling H, León-Yánez S (2017) Three millennia of vegetation and environmental dynamics in the Lagunas de Mojanda region, northern Ecuador. 57:407.  https://doi.org/10.1515/acpa-2017-0016
  162. von Hagen KB, Kadereit JW (2001) The phylogeny of Gentianella (Gentianaceae) and its colonization of the southern hemisphere as revealed by nuclear and chloroplast DNA sequence variation. Org Divers Evol 1:61–79.  https://doi.org/10.1078/1439-6092-00005 CrossRefGoogle Scholar
  163. Von Humboldt A (1807) Essai sur la géographie des plantes: accompagne d'un tableau physique des régions équinoxiales. Levrault & Schoell, ParisGoogle Scholar
  164. Vuille M, Bradley RS, Werner M, Keimig F (2003) 20th century climate change in the tropical Andes: observations and model results. Climate Change 59:75–99.  https://doi.org/10.1007/978-94-015-1252-7_5 CrossRefGoogle Scholar
  165. Vuille M, Kaser G, Juen I (2008a) Glacier mass balance variability in the Cordillera Blanca, Peru and its relationship with climate and the large-scale circulation. Glob Planet Chang 62:14–28.  https://doi.org/10.1016/j.gloplacha.2007.11.003 CrossRefGoogle Scholar
  166. Vuille M, Francou B, Wagnon P, Juen I, Kaser G, Mark BG, Bradley RS (2008b) Climate change and tropical Andean glaciers: past, present and future. Earth Sci Rev 89:79–96.  https://doi.org/10.1016/j.earscirev.2008.04.002 CrossRefGoogle Scholar
  167. Vuille M, Franquist E, Garreaud R, Lavado Casimiro WS, Cáceres B (2015) Impact of the global warming hiatus on Andean temperature. J Geophys Res-Atmos 120:3745–3757.  https://doi.org/10.1002/2015JD023126 CrossRefGoogle Scholar
  168. Vuille M, Carey M, Huggel C, Buytaert W, Rabatel A, Jacobsen D, Soruco A, Villacis M, Yarleque C, Elison Timm O, Condom T, Salzmann N, Sicart J-E (2018) Rapid decline of snow and ice in the tropical Andes—impacts, uncertainties and challenges ahead. Earth Sci Rev 176:195–213.  https://doi.org/10.1016/j.earscirev.2017.09.019 CrossRefGoogle Scholar
  169. Walker LR, del Moral R (2003) Primary succession and ecosystem rehabilitation. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  170. Williams JJ, Gosling WD, Brooks SJ, Coe AL, Xu S (2011) Vegetation, climate and fire in the eastern Andes (Bolivia) during the last 18,000years. Palaeogeogr Palaeoclimatol Palaeoecol 312:115–126.  https://doi.org/10.1016/j.palaeo.2011.10.001 CrossRefGoogle Scholar
  171. Young KR, Ponette-González AG, Polk MH, Lipton JK (2017) Snowlines and Treelines in the Tropical Andes. Ann Am Assoc Geogr 107:429–440.  https://doi.org/10.1080/24694452.2016.1235479 CrossRefGoogle Scholar
  172. Zemp M, Frey H, Gärtner-Roer I, Nussbaumer SU, Hoelzle M, Paul F, Haeberli W, Denzinger F, Ahlstrøm AP, Anderson B, Bajracharya S, Baroni C, Braun LN, Cáceres BE, Casassa G, Cobos G, Dávila LR, Delgado Granados H, Demuth MN, Espizua L, Fischer A, Fujita K, Gadek B, Ghazanfar A, Ove Hagen J, Holmlund P, Karimi N, Li Z, Pelto M, Pitte P, Popovnin VV, Portocarrero CA, Prinz R, Sangewar CV, Severskiy I, Sigurđsson O, Soruco A, Usubaliev R, Vincent C (2015) Historically unprecedented global glacier decline in the early 21st century. J Glaciol 61:745–762.  https://doi.org/10.3189/2015JoG15J017 CrossRefGoogle Scholar
  173. Zimmer A, Meneses RI, Rabatel A, Soruco A, Dangles O, Anthelme F (2018) Time lag between glacial retreat and upward migration alters tropical alpine communities. Perspect Plant Ecol Evol Syst 30:89–102.  https://doi.org/10.1016/j.ppees.2017.05.003 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Biodiversity DepartmentConsorcio para el Desarrollo Sostenible de la Ecorregión Andina (CONDESAN)QuitoEcuador
  2. 2.Department of Ecosystem and Landscape Dynamics, Institute for Biodiversity and Ecosystem Dynamics (IBED)University of AmsterdamAmsterdamThe Netherlands
  3. 3.Grupo de Investigación en Biodiversidad, Medio Ambiente y Salud –BIOMASUniversidad de Las Américas (UDLA)QuitoEcuador
  4. 4.Instituto de Ciencias Ambientales y Ecológicas, Facultad de CienciasUniversidad de los AndesMéridaVenezuela
  5. 5.Department of GeographyUniversity of ZurichZurichSwitzerland
  6. 6.Departamento de HumanidadesPontificia Universidad Católica del PerúLimaPeru
  7. 7.Laboratorio de Ecofisiología, Escuela de Ciencias BiológicasPontificia Universidad Católica del EcuadorQuitoEcuador
  8. 8.Biodiversity Informatics and Spatial Analysis, Royal Botanic Gardens Kew, The Jodrell LaboratoryKewUK

Personalised recommendations