Regional Environmental Change

, Volume 19, Issue 5, pp 1455–1468 | Cite as

Reallocating regional water apparent productivity in the long term: methodological contributions and application for Spain

  • Ignacio Cazcarro
  • Miguel Martín-Retortillo
  • Ana SerranoEmail author
Original Article


The main objective of this paper is to quantify and explain the main trends and determinants of long-term agricultural water apparent productivity (WAP). The WAP shows the economic value of products per cubic meter of water used and is calculated as the ratio between the value of agricultural production and its water use (the water footprint). In order to understand economic and agricultural structural changes, we use index decomposition analysis, novel in the study of WAP. This approach is consistently multidimensional (results for different crops and provinces are analyzed) and multilevel (different levels of crops and regional disaggregation are combined), and hence applications are possible for different regions and settings. In the case of Spanish agriculture (analyzed here), the study is of particular importance, given the profound political, economic, and agricultural transformations experienced in the twentieth century. Furthermore, given Spain’s particular environmental conditions—such as the high number of sunshine hours and the unequal distribution of rainfall—the spatial and temporal differences are notable in terms of crop production composition, economic value, and water footprint. The results show a 27% increase in agricultural WAP from 1955 to 2005–2010, totally explained by an improvement in water efficiency (intensity effect reflecting the use of water relative to the production attained) that happened in most areas of the country. The relative variations in the regional composition of the water footprint (share effect), and especially the crop production patterns (composition effect), contributed to a slowdown in total WAP at the country level. However, the share and composition effects encouraged the WAP’s growth in South and Southeast Spain, areas that produced high value-added crops with large water needs.


Water Agriculture Water apparent productivity Spain Regional analysis 



The authors greatfully acknowledge the financial support from the Ramón Areces Foundation, grant CISP15A3198. Miguel Martín-Retortillo belongs to the Reference Group of the Department of Science, Technology and Universities of the Government of Aragon “S55_17R” and to the project ECO2015-65582 from the Ministry of Science and Innovation of Spain. Ignacio Cazcarro and Ana Serrano are members of the Reference Group of the Department of Science, Technology and Universities of the Government of Aragon “S40_17R” and of the project ECO2016‐74940-P from the Ministry of Science and Innovation of Spain. The authors are grateful for the detailed and helpful comments of Prof. Vicente Pinilla and for those received from the participants at the 12th conference of the European Society for Ecological Economics (June 2017) and the 5th Annual Agricultural History Seminar (December 2017).

Funding information

This study has exclusively received funding from the Ramón Areces Foundation, grant CISP15A3198 (XV National Contest for Research in Social Sciences).

Supplementary material

10113_2019_1485_MOESM1_ESM.docx (1.1 mb)
ESM 1 (DOCX 1153 kb)


  1. Aldaya MM, Llamas MR (2012) El agua en España: bases para un pacto de futuro. Fundación Botín, MadridGoogle Scholar
  2. Ang BW (2004) Decomposition analysis for policymaking in energy. Energy Policy 32:1131–1139. CrossRefGoogle Scholar
  3. Ang BW (2015) LMDI decomposition approach: a guide for implementation. Energy Policy 86:233–238. CrossRefGoogle Scholar
  4. Ang BW, Choi KH (1997) Decomposition of aggregate energy and gas emission intensities for industry: a refined Divisia index method. Energy J 18:59–73. CrossRefGoogle Scholar
  5. Ang BW, Liu N (2007) Handling zero values in the logarithmic mean Divisia index decomposition approach. Energy Policy 35:238–246. CrossRefGoogle Scholar
  6. Ang BW, Wang H (2015) Index decomposition analysis with multidimensional and multilevel energy data. Energy Econ 51:67–76. CrossRefGoogle Scholar
  7. Ang BW, Zhang FQ (2000) A survey of index decomposition analysis in energy and environmental studies. Energy 25:1149–1176. CrossRefGoogle Scholar
  8. Ang BW, Mu AR, Zhou P (2010) Accounting frameworks for tracking energy efficiency trends. Energy Econ 32:1209–1219. CrossRefGoogle Scholar
  9. Ávila JC, González de Molina M (1999) El agua como factor limitante de la producción agrícola en Andalucía oriental. La vega de Granada, siglos XIX-XX. In: Garrabou R, Naredo JM (eds) El Agua En Los Sistemas Agrarios. Una Perspectiva Histórica. Fundación Argentaria, MadridGoogle Scholar
  10. Biswas AK (2004) Integrated water resources management: a reassessment. Water Int 29:248–256. CrossRefGoogle Scholar
  11. Brown A, Matlock MD (2011) A review of water scarcity indices and methodologies. The Sustainability Consortium, White paper, 106, 19Google Scholar
  12. Cazcarro I, Duarte R, Sánchez-Chóliz J (2013) Economic growth and the evolution of water consumption in Spain: a structural decomposition analysis. Ecol Econ 96:51–61. CrossRefGoogle Scholar
  13. Cazcarro I, Duarte R, Martín-Retortillo M, Pinilla V, Serrano A (2015a) Water scarcity and agricultural growth in Spain: from curse to blessing? In: Badia-Miró M, Pinilla V, Willebald H (eds) Natural resources and economic growth: learning from history. Routledge, London, pp 339–361. CrossRefGoogle Scholar
  14. Cazcarro I, Duarte R, Martín-Retortillo M, Pinilla V, Serrano A (2015b) How sustainable is the increase in the water footprint of the Spanish agricultural sector? A provincial analysis of the years 1955 and 2005. Sustainability 7:5094–5119. CrossRefGoogle Scholar
  15. Chartzoulakis K, Bertaki M (2015) Sustainable water management in agriculture under climate change. Agric Agric Sci Procedia 4:88–98. Google Scholar
  16. Chico D (2017) Influence of external drivers on water use efficiency and sustainability in agricultural production. [Thesis Doctoral]. E.T.S.I. Agrónomos, Universidad Politécnica de MadridGoogle Scholar
  17. Chico D, Garrido A (2012) Overview of the extended water footprint in Spain: the importance of agricultural water consumption in the Spanish economy. In: De Stefano L, Llamas MR (eds) Water, agriculture and the environment in Spain: can we square the circle? Taylor & Francis Group, LondonGoogle Scholar
  18. Choi K-H, Ang BW (2012) Attribution of changes in Divisia real energy intensity index — an extension to index decomposition analysis. Energy Econ 34:171–176. CrossRefGoogle Scholar
  19. Chouchane H, Hoekstra AY, Krol MS, Mekonnen MM (2015) The water footprint of Tunisia from an economic perspective. Ecol Indic 52:311–319. CrossRefGoogle Scholar
  20. Clar E, Serrano R, Pinilla V (2015) El comercio agroalimentario español en la segunda globalización, 1951–2011. Hist Agrar 65:113–145Google Scholar
  21. Clar E, Martín-Retortillo M, Pinilla V (2016) Agricultura y desarrollo económico en España, 1800-2000. Estudios sobre el desarrollo económico español. In: Gallego D, Germán L, Pinilla V (eds) Estudios sobre el desarrollo económico español dedicados al profesor Eloy Fernández Clemente. Prensas Universitarias de Zaragoza, ZaragozaGoogle Scholar
  22. Clar E, Martín-Retortillo M, Pinilla V (2018) The Spanish path of agrarian change, 1950–2005: from authoritarian to export-oriented productivism. J Agrar Chang 18:324–347. CrossRefGoogle Scholar
  23. Colinet Carmona MJ, Román Collado R (2016) LMDI decomposition analysis of energy consumption in Andalusia (Spain) during 2003–2012: the energy efficiency policy implications. Energy Effic 9:807–823CrossRefGoogle Scholar
  24. Dalin C, Konar M, Hanasaki N, Rinaldo A, Rodriguez-Iturbe I (2012) Evolution of the global virtual water trade network. Proc Nat Acad Sci 109:5989–5994. CrossRefGoogle Scholar
  25. Dinar A, Letey J (1991) Agricultural water marketing, allocative efficiency, and drainage reduction. J Environ Econ Manag 20:210–223. CrossRefGoogle Scholar
  26. Dionisio C, Blanco P, Thaler T (2014) An input-output assessment of water productivity in the castile and León region (Spain) 929–944.
  27. Duarte R, Pinilla V, Serrano A (2014) The effect of globalisation on water consumption: a case study of the Spanish virtual water trade, 1849–1935. Ecol Econ 100:96–105. CrossRefGoogle Scholar
  28. Embid-Irujo A (2005) Water pricing in Spain. Int J Water Res Dev 21:31–41. CrossRefGoogle Scholar
  29. Falkenmark M, Rockström J (2006) The new blue and green water paradigm: breaking new ground for water resources planning and management. J Water Resour Plan Manag 132:129–132. CrossRefGoogle Scholar
  30. Fernández González P (2015) Exploring energy efficiency in several European countries. An attribution analysis of the Divisia structural change index. Appl Energy 137:364–374. CrossRefGoogle Scholar
  31. Fernández González P, Landajo M, Presno MJ (2014) Multilevel LMDI decomposition of changes in aggregate energy consumption a cross country analysis in the EU-27. Energy Policy 68:576–584. CrossRefGoogle Scholar
  32. Fernández E, Pinilla V (2018) Spain. In: Anderson K, Pinilla V (eds) Wine globalization: a new comparative history. Cambridge University Press, New York, pp 208–238CrossRefGoogle Scholar
  33. Food and Agriculture Organization (FAO) (2017) FAOSTAT database collections. Food and Agriculture Organization of the United Nations, RomeGoogle Scholar
  34. Gardner B (1996) European agriculture: policies, production and trade. Routledge, LondonGoogle Scholar
  35. Garrido A, Llamas MR, Varela-Ortega C, Novo P, Rodríguez-Casado R, Aldaya MM (2010) Water footprint and virtual water trade in Spain: policy implications, natural resource management and policy. Springer- Fundación Marcelino Botín, New YorkCrossRefGoogle Scholar
  36. Gleick PH (2000) A look at twenty-first century water resources development. Water Int 25:127–138. CrossRefGoogle Scholar
  37. Gómez Benito C, González Rodríguez JJ (1997) Agricultura y sociedad en la España contemporánea. Ministerio de Agricultura, Pesca y Alimentación. Centro de Investigaciones Sociológicas, MadridGoogle Scholar
  38. González de Molina M (2001) Condicionamientos ambientales del crecimiento agrario español (siglos XIX y XX). In: Pujol-Andreu J, Gónzalez de Molina M, Fernández-Prieto L, Gallego D, Garrabou R (eds) El Pozo de Todos Los Males: Sobre El Atraso de La Agricultura Española Contemporánea. Crítica, BarcelonaGoogle Scholar
  39. González-Gómez F, García-Rubio MA, Guardiola J (2012) Introduction: water policy and management in Spain. Int J Water Resour Dev 28:3–11. CrossRefGoogle Scholar
  40. Hernández-Armenteros S, Rubio-Mondéjar JA, Garrués-Irurzun J (2016) A un panal de rica miel...: Empresas y empresarios en la exportación de aceite de oliva andaluz, 1886–1936. Hist Agraria 70:73–100Google Scholar
  41. Herranz A (1995) La construcción de pantanos y su impacto sobre la economía y población del Pirineo aragonés. In: Acín JL, Pinilla V (eds) Pueblos Abandonados. ¿Un Mundo Perdido? Rolde de Estudios Aragoneses, Zaragoza, pp 79–102Google Scholar
  42. Herranz A (2004) La dotación de infraestructuras en España, 1844–1935. Banco de España, Colección Estudios de Historia Económica, MadridGoogle Scholar
  43. Hoekstra AY, Chapagain AK, Aldaya M, Mekonnen MM (2009) Water footprint manual: state of the art 2009. Water Footprint Network, EnschedeGoogle Scholar
  44. Hoekstra AY, Chapagain AK, Aldaya M, Mekonnen MM (2011) The water footprint assessment manual: setting the global standard. Earthscan, London, UKGoogle Scholar
  45. Infante-Amate J (2012a) «Cuántos siglos de aceituna». El carácter de la expansión olivarera en el sur de España (1750–1900). Hist Agrar 58:39–72Google Scholar
  46. Infante-Amate J (2012b) The ecology and history of the Mediterranean olive grove: the Spanish great expansion, 1750–2000. Rural Hist 23:161–184. CrossRefGoogle Scholar
  47. Jun D, Ming W (2010) Energy performance index based on LMDI technique and decomposition analysis of Beijing’s energy consumption. In: 2010 International Conference on Future Information Technology and Management Engineering, Changzhou, pp 246–249. 
  48. Konar M, Hussein Z, Hanasaki N, Mauzerall DL, Rodriguez-Iturbe I (2013) Virtual water trade flows and savings under climate change. Hydrol Earth Syst Sci 17:3219–3234. CrossRefGoogle Scholar
  49. Kurniawan R, Sugiawan Y, Managi S (2018) Cleaner energy conversion and household emission decomposition analysis in Indonesia. J Clean Prod 201:334–342. CrossRefGoogle Scholar
  50. Lecina S, Isidoro D, Playán E, Aragüés R (2010) Irrigation modernization in Spain: effects on water quantity and quality – a conceptual approach. Int J Water Res Dev 26:265–282. CrossRefGoogle Scholar
  51. Liu N, Ma Z, Kang J (2015) Changes in carbon intensity in China’s industrial sector: decomposition and attribution analysis. Energy Policy 87:28–38. CrossRefGoogle Scholar
  52. Llamas MR, De Stefano L, Aldaya M, Custodio E, Garrido A, López-Gunn E, Willaarts B (2012) Introduction. In: De Stefano L, Llamas MR (eds) Water, agriculture and the environment in Spain: can we square the circle? - contents. Taylor & Francis Group, LondonCrossRefGoogle Scholar
  53. López-Gálvez, J., Losada, A., 1999. Evolución de técnicas de riego en el sudeste de España, in: Garrabou, R., Naredo, J.M. (Eds.), El Agua En Los Sistemas Agrarios. Una Perspectiva Histórica. Fundación Argentaria, MadridGoogle Scholar
  54. López-Gunn E (2009) Agua para todos: a new regionalist hydraulic paradigm in Spain. Water Altern 2:370–394Google Scholar
  55. Ma C (2014) A multi-fuel, multi-sector and multi-region approach to index decomposition: an application to China’s energy consumption 1995–2010. Energy Econ 42:9–16. CrossRefGoogle Scholar
  56. MAPAMA (1955) Anuario de Estadística. Ministerio de agricultura, pesca y alimentación, Madrid Google Scholar
  57. MAPAMA (1980) Anuario de Estadística. Ministerio de agricultura, pesca y alimentación, MadridGoogle Scholar
  58. MAPAMA (2005) Anuario de Estadística. Ministerio de agricultura, pesca y alimentación, MadridGoogle Scholar
  59. MAPAMA (2010) Anuario de Estadística. Ministerio de agricultura, pesca y alimentación, MadridGoogle Scholar
  60. Martinez-Cortina L, Garrido A, Lopez-Gunn E (2010) Re-thinking water and food security: fourth Botin Foundation water workshop. CRC Press, LondonGoogle Scholar
  61. Martinez-Santos P, Aldaya MM, Llamas MR (2014) Integrated water resources management in the 21st century: revisiting the paradigm. Taylor & Francis Group, London. CrossRefGoogle Scholar
  62. Martín-Retortillo M, Pinilla V (2015) Patterns and causes of the growth of European agricultural production, 1950 to 2005. Agric Hist Rev 63:132–159Google Scholar
  63. Mekonnen M, Hoekstra A (2011) The green, blue and grey water footprint of crops and derived crop products. Hydrol Earth Syst Sci 15:1577–1600. CrossRefGoogle Scholar
  64. Moratilla FE, Moreno MM, Barrena MF (2010) La Huella Hídrica en España. Rev Obras Públicas: Órgano Prof Los Ing Caminos, Canales Puertos 3514:21–38Google Scholar
  65. Nicklow J, Reed P, Savic D, Dessalegne T, Harrel L, Chan-Hilton A, Karamouz M, Minsker B, Ostfeld A, Singh A, Zechman E (2010) State of the art for genetic algorithms and beyond in water resources planning and management. J Water Resour Plan Manag 136:412–432. CrossRefGoogle Scholar
  66. OECD (2010) Sustainable management of water resources in agriculture. Organisation for Economic Co-operation and Development (OECD).
  67. Olanrewaju OA (2018) Energy consumption in south African industry: a decomposition analysis using the LMDI approach. Energy Environ 29(2):232–244. CrossRefGoogle Scholar
  68. Pimentel D, Houser J, Preiss E, White O, Fang H, Mesnick L, Barsky T, Tariche S, Schreck J, Alpert S (1997) Water resources: agriculture, the environment, and society. Bioscience 47:97–106. CrossRefGoogle Scholar
  69. Pimentel D, Berger B, Filiberto D, Newton M, Wolfe B, Karabinakis E, Clark S, Poon E, Abbett E, Nandagopal S (2004) Water resources: agricultural and environmental issues. Bioscience 54:909–918.[0909:WRAAEI]2.0.CO;2Google Scholar
  70. Pinilla V (2006) The development of irrigated agriculture in twentieth-century Spain: a case study of the Ebro basin. Agric Hist Rev 54:122–141Google Scholar
  71. Pinilla V (2008) Gestión y usos del agua en el siglo XX. Un estudio de caso: la Cuenca del Ebro. In: Pinilla V (ed) Gestión Y Usos Del Agua En La Cuenca Del Ebro En El Siglo XX. Prensas Universitarias de Zaragoza, Zaragoza, pp 9–35Google Scholar
  72. Pinilla V, Ayuda M-I (2010) Taking advantage of globalization? Spain and the building of the international market in Mediterranean horticultural products, 1850–1935. Eur Rev Econ Hist 14:239–274. CrossRefGoogle Scholar
  73. Piqueras J (1985) La agricultura valenciana de exportación y su formación histórica. Instituto de Estudios Agrarios, pesqueros y Alimentarios, MadridGoogle Scholar
  74. Prat N, Ibañez C (1995) Effects of water transfers projected in the Spanish National Hydrological Plan on the ecology of the lower river Ebro (N.E. Spain) and its delta. Water Sci Technol 31:79–86. CrossRefGoogle Scholar
  75. Pujol-Andreu J (2011) Wheat varieties and technological change in Europe, 19th and 20th centuries: new issues in economic history. Hist Agrar 54:71–103Google Scholar
  76. Reig Martínez, E., Picazo Tadeo, A., 2002. La agricultura española: crecimiento y productividad. Caja de Ahorros del Mediterráneo, AlicanteGoogle Scholar
  77. Salmoral G, Chico D (2013) Lessons learnt from analyses of water footprint of tomatoes and olive oil in Spain. In: De Stefano L, Llamas MR (eds) Water, agriculture and the environment in Spain: can we square the circle? CRC Press, LondonGoogle Scholar
  78. Santiago-Caballero C (2013) Trapped by nature: provincial grain yields in Spain in the mid 18th century. Rev Hist Econ– J Iber Lat Am Econ Hist 31:359–386. Google Scholar
  79. Serrano R, García-Casarejos N, Gil-Pareja S, Llorca-Vivero R, Pinilla V, (2015) The internationalisation of the Spanish food industry: the home market effect and European market integration. Spanish J Agric Res 13.
  80. Shabbir A, Arshad M, Bakhsh A, Usman M, Shakoor A, Ahmad I, Ahmad A (2012) Apparent and real water productivity for cotton-wheat zone of Punjab, Pakistan. Pakistan J Agric Sci 49:357–363Google Scholar
  81. Vörösmarty CJ, Hoekstra AY, Bunn SE, Conway D, Gupta J (2015) Fresh water goes global. Science 349:478–479. CrossRefGoogle Scholar
  82. Wang M, Feng C (2017) Decomposition of energy-related CO2 emissions in China: an empirical analysis based on provincial panel data of three sectors. Appl Energy 190:772–787. CrossRefGoogle Scholar
  83. Wang X, Huang K, Yu Y, Hu T, Xu Y (2016) An input-output structural decomposition analysis of changes in sectoral water footprint in China. Ecol Indic 69:26–34. CrossRefGoogle Scholar
  84. Wang H, Ang BW, Su B (2017) Assessing drivers of economy-wide energy use and emissions: IDA versus SDA. Energy Policy 107:585–599. CrossRefGoogle Scholar
  85. Wang Y, Lu J, Hao X (2018) Research on energy consumption of Beijing transportation industry based on LMDI method. IOP Conf Ser Earth Environ Sci 170:32009CrossRefGoogle Scholar
  86. Zhang S, Su X, Singh VP, Ayantobo OO, Xie J (2018) Logarithmic Mean Divisia Index (LMDI) decomposition analysis of changes in agricultural water use: a case study of the middle reaches of the Heihe River basin, China. Agric Water Manag 208:422–430. CrossRefGoogle Scholar
  87. Zhao X, Tillotson MR, Liu YW, Guo W, Yang AH, Li YF (2017) Index decomposition analysis of urban crop water footprint. Ecol Model 348:25–32. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Aragonese Agency for Research and Development (ARAID)ZaragozaSpain
  2. 2.Agrifood Institute of Aragon (IA2), Department of Economic Analysis, Faculty of Economics and Business StudiesUniversity of ZaragozaZaragozaSpain
  3. 3.Basque Centre for Climate Change Research (BC3)BilbaoSpain
  4. 4.Department of Economics, Faculty of Economics, Business and TourismUniversidad de AlcaláAlcalá de HenaresSpain

Personalised recommendations