Advertisement

Recent evolution of damage to infrastructure on permafrost in the French Alps

  • Pierre-Allain DuvillardEmail author
  • Ludovic Ravanel
  • Marco Marcer
  • Philippe Schoeneich
Original Article

Abstract

The past four decades have seen extensive development of the winter sport industry in the French Alps and several hundred ropeway transport systems have been installed in areas where mountain permafrost may be present. Due to current climatic change and the ensuing permafrost degradation, the vulnerability of these infrastructures to destabilization may increase. Therefore, there is a real potential for instabilities to develop on ropeway transport systems in the Alps, requiring a better understanding of these processes. This study investigates the relation between permafrost and infrastructure stability in the French Alps, seeking to understand the evolution of this phenomenon over the past decades. This was done by following a two-step analysis. At first, the infrastructure elements built on modeled permafrost-affected areas were inventoried at the scale of the French Alps in order to get an overview of the possible vulnerabilities. Then, our study presents a detailed historical inventory of damage to infrastructure over the past three decades in different geomorphologic contexts. Overall, in the French Alps, there are almost 1000 infrastructure elements located in permafrost areas among which 12 (i.e., 24 infrastructure elements) were identified to have been subject to repeated instances of disruption and deterioration and most of the damages recorded were in areas where permafrost degradation is fully expected (ice-rich terrain). Infrastructure recovery costs may be significantly high, making this issue a relevant consideration to be included in the design process.

Keywords

Mountain permafrost Infrastructures Damages Climate change French Alps 

Notes

Acknowledgements

The authors would like to thank the operators and managers of the infrastructure that has been included in the study, for all the information they have provided. We also thank the four Master’s degree students and T. Echelard who have made extensive contributions to the damage documentation work (Y. Bertel, P. Ustache, J. Vella and G. Weible). Thanks also to Neil Brodie and Hilary Dyer for improving the English. Finally, we would like to thank the reviewers and editors M. Phillips and C. Huggel for their helpful and critical review to improve the quality of the paper. This study was conducted with the help of Domaine Skiable de France and Cluster Montagne.

Funding information

P.-A. Duvillard’s PhD fellowship was supported by a grant from Ingénierie des Mouvements du Sol et des Risques Naturels (IMSRN) and the Association Nationale de la Recherche et de la Technologie (ANRt). The work is part of the EU POIA PermaRisk project, co-funded by the ERDF.

Supplementary material

10113_2019_1465_MOESM1_ESM.docx (15 kb)
ESM 1 (DOCX 15 kb)

References

  1. Amourous C (2000) L’implantation du ski alpin dans les Alpes françaises : la tradition étayage de la modernité. Rev Géographie Alp 88:9–20.  https://doi.org/10.3406/rga.2000.3007 CrossRefGoogle Scholar
  2. Arenson LU, Jakob M (2017) Permafrost-related geohazards and infrastructure construction in mountainous environments. Oxf Res Encycl Nat Hazard Sci 30. doi:  https://doi.org/10.1093/acrefore/9780199389407.013.292
  3. Arenson L, Hoelzle M, Springman S (2002) Borehole deformation measurements and internal structure of some rock glaciers in Switzerland. Permafrost Periglac Process 13:117–135.  https://doi.org/10.1002/ppp.414 CrossRefGoogle Scholar
  4. Arenson LU, Springman SM, Sego DC (2007) The rheology of frozen soils. Appl Rheol 17:12147.  https://doi.org/10.3933/ApplRheol-17-12147 Google Scholar
  5. Arenson LU, Phillips M, Springman SM (2009) Geotechnical consideration and technical solutions for infrastructure in mountain permafrost. In Krugger, M.I. and H.P. Stern, eds. New permafrost and glacier research. Hauppauge, NY, Nova, 3–50Google Scholar
  6. Beniston M (2005) Mountain climates and climatic change: an overview of processes focusing on the European Alps. Pure Appl Geophys 162:1587–1606.  https://doi.org/10.1007/s00024-005-2684-9 CrossRefGoogle Scholar
  7. Beniston M, Farinotti D, Stoffel M, Andreassen LM, Coppola E, Eckert N, Fantini A, Giacona F, Hauck C, Huss M, Huwald H, Lehning M, López-Moreno JI, Magnusson J, Marty C, Morán-Tejéda E, Morin S, Naaim M, Provenzale A, Rabatel A, Six D, Stötter J, Strasser U, Terzago S, Vincent C (2018) The European mountain cryosphere: a review of its current state, trends, and future challenges. Cryosphere 12:759–794.  https://doi.org/10.5194/tc-12-759-2018 CrossRefGoogle Scholar
  8. Bodin X, Thibert E, Fabre D, Ribolini A, Schoeneich P, Francou B, Reynaud L, Fort M (2009) Two decades of responses (1986–2006) to climate by the Laurichard rock glacier. French Alps Permafrost Periglac Process 20:331–344.  https://doi.org/10.1002/ppp.665 CrossRefGoogle Scholar
  9. Bodin X, Desvarreux P, Fabre D, Krysiecki JM, Gay M, Marie R, Lorier L, Schoeneich P, Vallon M (2010) Analyse des risques induits par la dégradation du permafrost alpin. Projet Fondation MAIF, Rapport finalGoogle Scholar
  10. Bodin X, Schoeneich P, Deline P, Ravanel L, Magnin F, Krysiecki JM, Echelard T (2015) Mountain permafrost and associated geomorphological processes: recent changes in the French Alps. Rev Geogr Alp 103-2. doi: https://doi.org/10.4000/rga.2885
  11. Bodin X, Krysiecki JM, Schoeneich P, Le Roux O, Lorier L, Echelard T, Peyron M, Walpersdorf A (2017) The 2006 collapse of the Bérard rock glacier (southern French Alps). Permafr Periglac Process 28:209–223.  https://doi.org/10.1002/ppp.1887 CrossRefGoogle Scholar
  12. Boeckli L, Brenning A, Gruber S, Noetzli J (2012) Permafrost distribution in the European Alps: calculation and evaluation of an index map and summary statistics. Cryosphere 6:807–820.  https://doi.org/10.5194/tc-6-807-2012 CrossRefGoogle Scholar
  13. Bommer C, Phillips M, Arenson LU (2010a) Practical recommendations for planning, constructing and maintaining infrastructure in mountain permafrost. Permafr Periglac Process 21:97–104.  https://doi.org/10.1002/ppp.679 CrossRefGoogle Scholar
  14. Bommer C, Phillips M, Keusen H-R, Teysseire P (2010b) Construire sur le pergélisol: guide pratique. Institut fédéral de recherches sur la forêt, la neige et le paysage. WSL, BirmensdorfGoogle Scholar
  15. Boyle J, Cunningham M, Dekens J (2013) Climate Change Adaptation and Canadian Infrastructure. A review of the literature. International Institute for Sustainable Development (IISD), WinnipegGoogle Scholar
  16. Davies MCR, Hamza O, Harris C (2001) The effect of rise in mean annual temperature on the stability of rock slopes containing ice-filled discontinuities. Permafr Periglac Process 12:137–144.  https://doi.org/10.1002/ppp.378 CrossRefGoogle Scholar
  17. Dobinski W (2011) Permafrost. Earth Sci Rev 108:158–169.  https://doi.org/10.1016/j.earscirev.2011.06.007 CrossRefGoogle Scholar
  18. Domaines Skiables de France (2018) Indicateurs et analyse 2018. Observatoire, Rapport annuelGoogle Scholar
  19. Duvillard PA, Ravanel L, Deline P (2015) Risk assessment of infrastructure destabilisation due to global warming in the high French Alps. Rev Geogr Alp 103-2. doi: https://doi.org/10.4000/rga.2896
  20. Duvillard PA, Revil A, Qi Y, Soueid Ahmed A, Coperey A, Ravanel L (2018) Three-dimensional electrical conductivity and induced polarization tomography of a rock glacier. J Geophys Res Solid Earth 123:9528–9554.  https://doi.org/10.1029/2018JB015965 CrossRefGoogle Scholar
  21. Duvillard PA, Ravanel L, Schoeneich P, Marcer M, Piard JF (accepted) Analyse multi-méthodes de la déstabilisation d’un pylône de remontée mécanique implanté sur un glacier rocheux des Alpes françaises. Géomorphologie, Relief, Processus, EnvironnementGoogle Scholar
  22. Einhorn B, Eckert N, Chaix C, Ravanel L, Deline P, Gardent M, Boudières V, Richard D, Vengeon JM, Giraud G, Schoeneich P (2015) Climate change and natural hazards in the Alps. J Alpine Res 103-2. doi:  https://doi.org/10.4000/rga.2878
  23. Fabre D, Cadet H, Lorier L, Leroux O (2015) Detection of permafrost and foundation related problems in High Mountain ski resorts. In: Lollino G, Manconi A, Clague J (eds) Engineering geology for society and territory - volume 1: climate change and engineering geology. Springer International Publishing, Cham, pp 321–324.  https://doi.org/10.1007/978-3-319-09300-0_60 Google Scholar
  24. Giorgi F, Torma C, Coppola E, Ban N, Schär C, Somot S (2016) Enhanced summer convective rainfall at alpine high elevations in response to climate warming. Nat Geosci 9:584–589.  https://doi.org/10.1038/ngeo2761 CrossRefGoogle Scholar
  25. Gobiet A, Kotlarski S, Beniston M, Heinrich G, Rajczak J, Stoffel M (2014) 21st century climate change in the European Alps—a review. Sci Total Environ 493:1138–1151.  https://doi.org/10.1016/j.scitotenv.2013.07.050 CrossRefGoogle Scholar
  26. Gruber S (2012) Derivation and analysis of a high-resolution estimate of global permafrost zonation. Cryosphere 6:221–233.  https://doi.org/10.5194/tc-6-221-2012 CrossRefGoogle Scholar
  27. Gruber S, Haeberli W (2007) Permafrost in steep bedrock slopes and its temperature-related destabilization following climate change. J Geophys Res 112. doi: https://doi.org/10.1029/2006JF000547
  28. Haeberli W (1992) Construction, environmental problems and natural hazards in periglacial mountain belts. Permafr Periglac Process 3:111–124.  https://doi.org/10.1002/ppp.3430030208 CrossRefGoogle Scholar
  29. Haeberli W (2013) Mountain permafrost, research frontiers and a special long-term challenge. Cold Reg Sci Technol 96:71–76.  https://doi.org/10.1016/j.coldregions.2013.02.004 CrossRefGoogle Scholar
  30. Haeberli W, Beniston M (1998) Climate change and its impacts on glaciers and permafrost in the Alps. Ambio 27:258–265 http://www.jstor.org/stable/4314732 Google Scholar
  31. Haeberli W, Gruber S (2009) Global warming and mountain permafrost. In: Margesin R (ed) Permafrost soils. Springer Berlin Heidelberg, Berlin, pp 205–218.  https://doi.org/10.1007/978-3-540-69371-0_14 CrossRefGoogle Scholar
  32. Haeberli W, Schaub Y, Huggel C (2017) Increasing risks related to landslides from degrading permafrost into new lakes in de-glaciating mountain ranges. Geomorphology 293:405–417.  https://doi.org/10.1016/j.geomorph.2016.02.009 CrossRefGoogle Scholar
  33. Harris C, Davies MCR, Etzelmüller B (2001) The assessment of potential geotechnical hazards associated with mountain permafrost in a warming global climate. Permafr Periglac Process 12:145–156.  https://doi.org/10.1002/ppp.376 CrossRefGoogle Scholar
  34. Harris C, VonderMühll D, Isaksen K, Haeberli W, Sollid JL, King L, Holmlund P, Dramis F, Guglielmin M, Palacios D (2003) Warming permafrost in European mountains. Glob Planet Change 39:215–225.  https://doi.org/10.1016/j.gloplacha.2003.04.001 CrossRefGoogle Scholar
  35. Harris C, Arenson LU, Christiansen HH, Etzelmüller B, Frauenfelder R, Gruber S, Haeberli W, Hauck C, Hölzle M, Humlum O, Isaksen K, Kääb A, Kern-Lütschg MA, Lehning M, Matsuoka N, Murton JB, Nötzli J, Phillips M, Ross N, Seppälä M, Springman SM, Vonder Mühll D (2009) Permafrost and climate in Europe: monitoring and modelling thermal, geomorphological and geotechnical responses. Earth-Sci Rev 92:117–171.  https://doi.org/10.1016/j.earscirev.2008.12.002 CrossRefGoogle Scholar
  36. Hjort J, Karjalainen O, Aalto J, Westermann S, Romanovsky VE, Nelson FE, Etzelmüller B, Luoto M (2018) Degrading permafrost puts Arctic infrastructure at risk by mid-century. Nat Commun 9:5147.  https://doi.org/10.1038/s41467-018-07557-4 CrossRefGoogle Scholar
  37. Hoelzle M, Wegmann M, Krummenacher B (1999) Miniature temperature dataloggers for mapping and monitoring of permafrost in high mountain areas: first experience from the Swiss Alps. Permafr Periglac Process 10:113–124.  https://doi.org/10.1002/(SICI)1099-1530(199904/06)10:2<113::AID-PPP317>3.0.CO;2-A CrossRefGoogle Scholar
  38. Höfer-Öllinger G, Keuschnig M, Krautblatter M, Schober A (2015) Climate change impacts on high alpine infrastructure: an example from the Kitzsteinhorn (3200 m), Salzburg, Austria. In: Lollino G, Manconi A, Clague J (eds) Engineering geology for society and territory - volume 1: climate change and engineering geology. Springer International Publishing, Cham, pp 301–303.  https://doi.org/10.1007/978-3-319-09300-0_56 Google Scholar
  39. Ikeda A, Matsuoka N, Kääb A (2008) Fast deformation of perennially frozen debris in a warm rock glacier in the Swiss Alps: an effect of liquid water. J Geophys Res Earth Surf 113. doi: https://doi.org/10.1029/2007jf000859
  40. Instanes A (2016) Incorporating climate warming scenarios in coastal permafrost engineering design – case studies from Svalbard and Northwest Russia. Cold Reg Sci Technol 131:76–87.  https://doi.org/10.1016/j.coldregions.2016.09.004 CrossRefGoogle Scholar
  41. IPCC (2013) Climate change 2013: the physical science basis. In the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge.  https://doi.org/10.1017/CBO9781107415324,2013
  42. Kenner R, Phillips M, Beutel J, Hiller M, Limpach P, Pointner E, Volken M (2017) Factors controlling velocity variations at short-term, seasonal and multiyear time scales, Ritigraben rock glacier, western Swiss Alps. Permafr Periglac Process 28:675–684.  https://doi.org/10.1002/ppp.1953 CrossRefGoogle Scholar
  43. Krautblatter M, Funk D, Günzel FK (2013) Why permafrost rocks become unstable: a rock–ice-mechanical model in time and space. Earth Surf Process Landf 38:876–887.  https://doi.org/10.1002/esp.3374 CrossRefGoogle Scholar
  44. Larsen PH, Goldsmith S, Smith O, Wilson ML, Strzepek K, Chinowsky P, Saylor B (2008) Estimating future costs for Alaska public infrastructure at risk from climate change. Glob Environ Chang 18:442–457.  https://doi.org/10.1016/j.gloenvcha.2008.03.005 CrossRefGoogle Scholar
  45. Luethi R, Phillips M (2016) Challenges and solutions for long-term permafrost borehole temperature monitoring and data interpretation. Geogr Helvetica 71:121–131.  https://doi.org/10.5194/gh-71-121-2016 CrossRefGoogle Scholar
  46. Luethi R, Phillips M, Lehning M (2017) Estimating non-conductive heat flow leading to intra-permafrost talik formation at the Ritigraben rock glacier (Western Swiss Alps): estimating non-conductive heat flow. Permafr Periglac Process 28:183–194.  https://doi.org/10.1002/ppp.1911 CrossRefGoogle Scholar
  47. Magnin F, Deline P, Ravanel L, Noetzli J, Pogliotti P (2015a) Thermal characteristics of permafrost in the steep alpine rock walls of the aiguille du Midi (Mont Blanc massif, 3842 m a.S.L). Cryosphere 9:109–121.  https://doi.org/10.5194/tc-9-109-2015 CrossRefGoogle Scholar
  48. Magnin F, Brenning A, Bodin X, Deline P, Ravanel L (2015b) Modélisation statistique de la distribution du permafrost de paroi: application au massif du Mont Blanc. Géomorphologie Relief Process Environ 21:145–162.  https://doi.org/10.4000/geomorphologie.10965 CrossRefGoogle Scholar
  49. Magnin F, Westermann S, Pogliotti P, Ravane L, Deline P, Malet E (2017) Snow control on active layer thickness in steep alpine rock walls (aiguille du Midi, 3842ma.S.L., Mont Blanc massif). Catena 149:648–662.  https://doi.org/10.1016/j.catena.2016.06.006 CrossRefGoogle Scholar
  50. Marcer M, Bodin X, Brenning A, Schoeneich P, Charvet R, Gottardi F (2017) Permafrost favorability index : spatial modelling in the French Alps using rock glaciers inventory. Front Earth Sci 5.  https://doi.org/10.3389/feart.2017.00105
  51. Marty C, Schlögl S, Bavay M, Lehning M (2017) How much can we save? Impact of different emission scenarios on future snow cover in the Alps. Cryosphere 11:517–529.  https://doi.org/10.5194/tc-11-517-2017 CrossRefGoogle Scholar
  52. Melvin AM, Larsen P, Boehlert B, Neumann JE, Chinowsky P, Espinet X, Martinich J, Baumann MS, Rennels L, Bothner A, Nicolsky DJ, Marchenko SS (2017) Climate change damages to Alaska public infrastructure and the economics of proactive adaptation. Proc Natl Acad Sci 114:E122–E131.  https://doi.org/10.1073/pnas.1611056113 CrossRefGoogle Scholar
  53. O’Neill HB, Burn CR (2017) Impacts of variations in snow cover on permafrost stability, including simulated snow management, Dempster highway, Peel plateau, Northwest Territories. Arctic Sci 3:150–178.  https://doi.org/10.1139/as-2016-0036 CrossRefGoogle Scholar
  54. PERMOS (2016) Permafrost in Switzerland 2010/2011 to 2013/2014. In J. Noetzli, R. Luethi, & B. Staub (Eds.), Glaciological Report Permafrost No. 12–15 of the Cryospheric Commission of the Swiss Academy of Sciences Fribourg, 85 ppGoogle Scholar
  55. Phillips M (2006) Avalanche defence strategies and monitoring of two sites in mountain permafrost terrain, Pontresina, eastern Swiss Alps. Nat Hazards 39:353–379.  https://doi.org/10.1007/s11069-005-6126-x CrossRefGoogle Scholar
  56. Phillips M, Ladner F, Müller M, Sambeth U, Sorg J, Teysseire P (2007) Monitoring and reconstruction of a chairlift midway station in creeping permafrost terrain, Grächen, Swiss Alps. Cold Reg Sci Technol 47:32–42.  https://doi.org/10.1016/j.coldregions.2006.08.014 CrossRefGoogle Scholar
  57. Piazza M, Boé J, Terray L, Pagé C, Sanchez-Gomez E, Déqué M (2014) Projected 21st century snowfall changes over the French Alps and related uncertainties. Clim Chang 122:583–594.  https://doi.org/10.1007/s10584-013-1017-8 CrossRefGoogle Scholar
  58. Pogliotti P, Guglielmin M, Cremonese E, Morra di Cella U, Filippa G, Pellet C, Hauck C (2015) Warming permafrost and active layer variability at Cime Bianche, Western European Alps. Cryosphere 9:647–661.  https://doi.org/10.5194/tc-9-647-2015 CrossRefGoogle Scholar
  59. Pröbstl-Haider U, Dabrowska K, Haider W (2016) Risk perception and preferences of mountain tourists in light of glacial retreat and permafrost degradation in the Austrian Alps. Risk Outdoor Recreat Nat Based Tour 13:66–78.  https://doi.org/10.1016/j.jort.2016.02.002 CrossRefGoogle Scholar
  60. Ravanel L, Deline P (2010) Climate influence on rockfalls in high-alpine steep rockwalls: the north side of the aiguilles de Chamonix (Mont Blanc massif) since the end of the “little ice age”. The Holocene 21:357–365.  https://doi.org/10.1177/0959683610374887 CrossRefGoogle Scholar
  61. Ravanel L, Deline P, Lambiel C, Vincent C (2013) Instability of a high alpine rock ridge: the lower arête des cosmiques, mont blanc massif, France. Geogr Ann Ser B 95:51–66.  https://doi.org/10.1111/geoa.12000 CrossRefGoogle Scholar
  62. Ravanel L, Deline P, Lambiel C, Duvillard P-A (2015) Stability monitoring of high alpine infrastructure by terrestrial laser scanning. In: Lollino G, Manconi A, Clague J (eds) Engineering geology for society and territory - volume 1: climate change and engineering geology. Springer International Publishing, Cham, pp 169–172.  https://doi.org/10.1007/978-3-319-09300-0_32 Google Scholar
  63. Ravanel L, Magnin F, Deline P (2017) Impacts of the 2003 and 2015 summer heat waves on permafrost-affected rockwalls in the Mont Blanc massif. Sci Total Environ 609:132–143.  https://doi.org/10.1016/j.scitotenv.2017.07.055 CrossRefGoogle Scholar
  64. Ravanel L, Duvillard PA, Jaboyedoff M, Lambiel C (2018) Recent evolution of an ice-cored moraine at the Gentianes pass, Valais Alps, Switzerland. Land Degrad Dev 29(10):3693–3708.  https://doi.org/10.1002/ldr.3088 CrossRefGoogle Scholar
  65. Rixen C, Haeberli W, Stoeckli V (2004) Ground temperatures under ski Pistes with artificial and natural snow. Arct Antarct Alp Res 36:419–427. https://doi.org/10.1657/15230430(2004)036[0419:GTUSPW]2.0.CO;2Google Scholar
  66. Rödder T, Kneisel C (2012) Influence of snow cover and grain size on the ground thermal regime in the discontinuous permafrost zone, Swiss Alps. Geomorphology 175–176:176–189.  https://doi.org/10.1016/j.geomorph.2012.07.008 CrossRefGoogle Scholar
  67. Scherrer SC, Fischer EM, Posselt R, Liniger MA, Croci-Maspoli M, Knutti R (2016) Emerging trends in heavy precipitation and hot temperature extremes in Switzerland. J Geophys Res Atmos 121:2626–2637.  https://doi.org/10.1002/2015jd024634 CrossRefGoogle Scholar
  68. Schoeneich P, Dall’Amico M, Deline P, Zischg A (2011) Hazards related to permafrost and to permafrost degradation. PermaNET project, state-of-the-art report 6.2. On-line publication ISBN 978–2–903095-59-8Google Scholar
  69. Schoeneich P, Bodin X, Echelard T, Kaufmann V, Kellerer-Pirklbauer A, Krysiecki JM, Lieb GK (2015) Velocity changes of rock glaciers and induced hazards. In: Lollino G, Manconi A, Clague J (eds) Engineering geology for society and territory - volume 1: climate change and engineering geology. Springer International Publishing, pp 223–227. doi: https://doi.org/10.1007/978-3-319-09300-0_42
  70. Shiklomanov NI, Streletskiy DA, Swales TB, Kokorev VA (2017) Climate change and stability of urban infrastructure in Russian permafrost regions: prognostic assessment based on GCM climate projections. Geogr Rev 107:125–142.  https://doi.org/10.1111/gere.12214 CrossRefGoogle Scholar
  71. Stoffel M, Huggel C (2012) Effects of climate change on mass movements in mountain environments. Prog Phys Geogr 36:421–439.  https://doi.org/10.1177/0309133312441010 CrossRefGoogle Scholar
  72. Zhou X, Buchli T, Kinzelbach W, Stauffer F, Springman SM (2015) Analysis of thermal behaviour in the active layer of degrading mountain permafrost: thermal behaviour in the active layer of degrading mountain permafrost. Permafr Periglac Process 26:39–56.  https://doi.org/10.1002/ppp.1827 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Université Grenoble Alpes/Université Savoie Mont-Blanc, CNRSLe Bourget du LacFrance
  2. 2.IMSRNMontbonnotFrance
  3. 3.Université Grenoble Alpes, Institut d’Urbanisme et de Géographie Alpine, PACTEGrenobleFrance

Personalised recommendations