Advertisement

Regional Environmental Change

, Volume 19, Issue 3, pp 879–892 | Cite as

Actor-specific risk perceptions and strategies for resilience building in different food systems in Kenya and Bolivia

  • Johanna JacobiEmail author
  • Stellah Mukhovi
  • Aymara Llanque
  • Daniela Toledo
  • Chinwe Ifejika Speranza
  • Fabian Käser
  • Horacio Augstburger
  • José Manuel Freddy Delgado
  • Boniface P. Kiteme
  • Stephan Rist
Original Article

Abstract

Food system sustainability depends, among other aspects, on the resilience of different components of food systems. By resilience, we mean the ability of a food system to withstand stress and shocks, recover, and adapt to change. In this study, we examined the resilience of food systems, firstly, by compiling the risks perceived by different food system actors in the Santa Cruz Department, Bolivia, and the northwestern Mount Kenya Region, Kenya—two regions that are important to their respective national food supply. Secondly, we evaluated whether and under what circumstances these perceptions translate into adaptive or preventive strategies that benefit food system resilience. Among all actors, the most frequently perceived risks relate to production levels. Further, the many (sometimes contradictory) perceptions of risk and uncertainty among different actor groups do not necessarily translate into adaptation strategies. Reasons for this include structural factors as well as the “risk perception paradox”, particularly regarding preventive strategies. However, we also observed many implicit strategies illustrating how different actors develop responses within their possibilities. However, most such strategies were insufficient to mitigate, much less to adapt to, the perceived risks. To build resilience, existing innovative policies need to be enforced in both countries. These include disaster risk reduction programs and programs to reduce the vulnerability of marginalized groups who are crucial to food systems, such as smallholder farmers, pastoralists, and food workers.

Keywords

Food systems Resilience Risk perceptions Strategies Bolivia Kenya 

Notes

Acknowledgements

The authors wish to thank all the participating food system actors, and Anu Lannen for language editing.

Funding information

This work was carried out within the Swiss Programme for Global Issues on Development (r4d programme) funded by the Swiss Agency for Development and Cooperation (SDC) and the Swiss National Science Foundation (SNSF) [Grant number 400540_152033].

Supplementary material

10113_2018_1448_MOESM1_ESM.pdf (218 kb)
Online Resource 1 Food system actors studied in Bolivia (PDF 217 kb)
10113_2018_1448_MOESM2_ESM.pdf (221 kb)
Online Resource 2 Food system actors studied in Kenya (PDF 220 kb)

References

  1. Aeschbacher J, Liniger H, Weingartner R (2005) River water shortage in a Hghland-lowland system. A case study of the impacts of water abstraction in the Mount Kenya region. Mt Res Dev 25:155–162. https://doi.org/10.1659/0276-4741(2005)025[0155:RWSIAH]2.0.CO;2Google Scholar
  2. Alinovi L, D'Errico M, Mane E, Romano D (2010) Livelihoods Strategies and Househols Resilience to Food Insecurity: An Empirical Analysis to Kenya Paper prepared for the Conference on “Promoting Resilience through Social Protection in Sub-Saharan Africa”, organised by the European Report of Development in Dakar, SenegalGoogle Scholar
  3. Altieri M, Nicholls C (2013) The adaptation and mitigation potential of traditional agriculture in a changing climate. Clim Chang 140:1–13.  https://doi.org/10.1007/s10584-013-0909-y Google Scholar
  4. Altieri MA, Nicholls CI (2012) Agroecology scaling up for food sovereignty and resiliency. Sustain Agr Rev 11:1–29.  https://doi.org/10.1007/978-94-007-5449-2_1 CrossRefGoogle Scholar
  5. Aubin J, Donnars C, Supkova M, Dorin B (2013) A critical panorama of methods used to assess food sustainability. In: Esnouf C (ed) Food system sustainability. Cambridge University Press, New York, pp 198–232CrossRefGoogle Scholar
  6. Bahadur AV, Ibrahim M, Tanner T (2013) Characterising resilience: unpacking the concept for tackling climate change and development. Clim Dev 5:55–65.  https://doi.org/10.1080/17565529.2012.762334 CrossRefGoogle Scholar
  7. Blaikie P, Cannon T, Davis I, Wisner B (1994) At Risk: Natural Hazards, People's Vulnerability, and Disasters. Routledge, London and New YorkGoogle Scholar
  8. Blair B, Lovecraft AL, Kofinas GP (2014) Meeting institutional criteria for social resilience: a nested risk system model. Ecol Soc 19.  https://doi.org/10.5751/es-06944-190436
  9. Candy S, Biggs C, Larsen K, Turner G (2015) Modelling food system resilience: a scenario-based simulation modelling approach to explore future shocks and adaptations in the Australian food system. J Environ Stud Sci 5:712–731.  https://doi.org/10.1007/s13412-015-0338-5 CrossRefGoogle Scholar
  10. Castañon Ballivián E (2014) Two sides of the same coin: agriculture and food security in Bolivia. Fundación Tierra and Forschungs- und Dokumentationszentrum Chile-Lateinamerika, BerlinGoogle Scholar
  11. Catacora Vargas G (2017) Seguridad Alimentaria y Derecho a la Alimentación - Resultados de una Evaluación Exploratoria entre Actores de Sistemas Alimentarios Agroecológico, Indígena y Agroindustrial en el Departamento de Santa Cruz, Bolivia. Agruco, CochabambaGoogle Scholar
  12. Colonna P, Fournier S, Touzard J (2013) Food Systems. In: Esnouf C (ed) Food system sustainability: insights from DuALine. Cambridge University Press, New York, pp 69–100CrossRefGoogle Scholar
  13. Cuesta J, Edmeades S, Madrigal L (2013) Food security and public agricultural spending in Bolivia: putting money where your mouth is? Food Policy 40:1–13.  https://doi.org/10.1016/j.foodpol.2013.01.004 CrossRefGoogle Scholar
  14. Dell'Angelo J, McCord P, Gowe D, Carpenter S, Calylor K, Evans T (2016) Community water governance on Mount Kenya: an assessment based on Ostrom’s design principles of natural resource management. Mt Res Dev 36:102–115CrossRefGoogle Scholar
  15. Elrick-Barr CE, Thomsen DC, Preston BL, Smith TF (2016) Perceptions matter: household adaptive capacity and capability in two Australian coastal communities. Reg Environ Chang 17:1–11.  https://doi.org/10.1007/s10113-016-1016-1 Google Scholar
  16. Ericksen P, Bohle H, Steward B (2010) Vulnerability and resilience of food systems. In: Ingram J, Ericksen P, Liverman D (eds) Food Security and Global Environmental Change. Earthscan, London, Washington DC, pp 67–77Google Scholar
  17. Esnouf C, Russel M, Bricas N (eds) (2013) Food system sustainability: insights from duALIne. Cambridge University Press, New YorkGoogle Scholar
  18. FAO (2013) The state of food insecurity in the world. The multiple dimensions of food security. Food and Agriculture Organization of the United Nations, RomeGoogle Scholar
  19. FAO (2015) Global Forest Resources Assessment 2015. Food and Agriculture Organization of the United Nations, RomeGoogle Scholar
  20. FAO, IFAD, UNICEF, WFP, WHO (2018) The State of Food Security and Nutrition in the World 2018. Building climate resilience for food security and nutrition, RomeGoogle Scholar
  21. Global Forest Watch (2017) http://www.globalforestwatch.org/country/BOL. Accessed 30 October 2017
  22. Gobierno Autónomo Municipal de Samaipata (2016) Plan Territorial de Desarrollo integral PTDI 2016-2020. SamaipataGoogle Scholar
  23. Gobierno Autónomo Municipal de San Pedro (2013) Plan de Desarrollo Municipal (PDM) 2014-2018 Por un Municipio Pujante y Productivo. In: Santa Cruz de la SierraGoogle Scholar
  24. Gobierno Municipal de Cabezas (2010) Plan de Desarrollo Municipal de Cabezas 2011-2015. In: CabezasGoogle Scholar
  25. Gonzales Soto D (2016) Efectos de la política pública en la seguridad y soberanía alimentaria a partir de la legislación existente en los sistemas alimentarios agroindustrial, indígena-campesino y agroecológico. Estudio de caso de los Municipios de San Pedro, Cabezas y La Guardia del Departamento de Santa Cruz. Master's Thesis, Universidad Mayor de San Simón, CochabambaGoogle Scholar
  26. Government of Kenya (2013) National Climate Change Action Plan 2013-2017. NairobiGoogle Scholar
  27. Haddad L, Hawkes C (2016) A new global research agenda for food. Nature 540:30–32CrossRefGoogle Scholar
  28. Hendrickson MK (2015) Resilience in a concentrated and consolidated food system. J Environ Stud Sci 5:418–431.  https://doi.org/10.1007/s13412-015-0292-2 CrossRefGoogle Scholar
  29. Hertkorn ML (2016) Impliziten und explizites Wissen im Kontext globaler Entwicklung Am Beispiel der Interaktion wissenscaftlicher und bäuerlicher Perspektiven auf "gute Ernährung". Master's Thesis, ETH Zurich and University of BernGoogle Scholar
  30. Hirsig S, Märki S (2016) ‘We have the land but not the food’: A food system analysis in two communities in the soy production area of Bolivia. Master's Thesis, University of BernGoogle Scholar
  31. Hodbod J, Eakin H (2015) Adapting a social-ecological resilience framework for food systems. J Environ Stud Sci 5:474–484.  https://doi.org/10.1007/s13412-015-0280-6 CrossRefGoogle Scholar
  32. Holling CS (2001) Understanding the complexity of economic, ecological, and social systems. Ecosystems 4:390–405.  https://doi.org/10.1007/s10021-001-0101-5 CrossRefGoogle Scholar
  33. Humphreys D, Bebbington A (2010) Extracción, territorio e inequidads: el gas en el Chaco boliviano. Rev Umbr Cs Soc 20:127–160Google Scholar
  34. IFAD (2016) Rural development report 2016. Fostering inclusive rural transformation. International Fund for Agricultural Development, RomeGoogle Scholar
  35. Ifejika Speranza C (2010) Resilient Adaptation to Climate Change in African Agriculture. DIE Studies. Deutsches Institut für Entwicklungspolitik, BonnGoogle Scholar
  36. Ifejika Speranza C (2013) Buffer capacity: capturing a dimension of resilience to climate change in African smallholder agriculture. Reg Environ Chang 13:521–535.  https://doi.org/10.1007/s10113-012-0391-5 CrossRefGoogle Scholar
  37. IPES-Food (2016) From uniformity to diversity: a paradigm shift from industrial agriculture to diversified agroecological systems. International panel of experts on sustainable food systems. http://www.ipes-food.org/images/Reports/UniformityToDiversity_FullReport.pdf. Accessed 2 June 2016
  38. IPES (2015) The new science of sustainable food systems: overcoming barriers to food systems reform. International Panel of Experts on Sustainable Food systems. http://www.ipes-food.org/images/Reports/IPES_report01_1505_web_br_pages.pdf. Accessed 30 May 2015
  39. Jacobi J, Mukhovi S, Llanque A, Augstburger H, Käser F, Pozo C, Ngutu Peter M, Rist S, Ifejika Speranza C (2018) Operationalizing food system resilience: an indicator-based assessment in agroindustrial, smallholder farming, and agroecological contexts in Bolivia and Kenya. Land Use Policy 79:433–446.  https://doi.org/10.1016/j.landusepol.2018.08.044 CrossRefGoogle Scholar
  40. Jones L, Tanner T (2016) Subjective resilience’: using perceptions to quantify household resilience to climate extremes and disasters. Reg Environ Chang 17:1–15.  https://doi.org/10.1007/s10113-016-0995-2 Google Scholar
  41. Kaplinsky R, Morris M (2001) A Handbook for Value Chain Research. International Development research Centre, OttawaGoogle Scholar
  42. Leah HS, James SG, Navin R, Mario H, Paul CW (2016) Subnational distribution of average farm size and smallholder contributions to global food production. Environ Res Lett 11:124010CrossRefGoogle Scholar
  43. McKay B, Colque G (2015) Bolivia's soy complex: the development of ‘productive exclusion. J Peasant Stud 43:1–28.  https://doi.org/10.1080/03066150.2015.1053875 Google Scholar
  44. Ministry of Environment and Natural Resources (2016) National Climate Change Framework Policy. In: NairobiGoogle Scholar
  45. Navarro G, Maldonado M (2002) Geografía Ecológica de Bolivia. Centro de Ecología Difusión Simón I. Patiño, Santa Cruz de la SierraGoogle Scholar
  46. National Institute of Statustics (INE) (2018) https://www.ine.gob.bo/index.php/demografia/introduccion-2. Accessed 19 February 2018
  47. Ottiger F (2018) Resource use intensity in different food systems in the north-western Mount Kenya Region Master's Thesis, University of BernGoogle Scholar
  48. Patton MQ (2002) Qualitative Research & Evaluation Methods. Sage, Beverly HillsGoogle Scholar
  49. Plurinational Ministry of Planification (2016) INFO-SPIE. http://si-spie.planificacion.gob.bo/. Accessed 1 July 2016
  50. Prosperi P, Allen T, Cogill B, Padilla M, Peri I (2016) Towards metrics of sustainable food systems: a review of the resilience and vulnerability literature. Environ Syst Decis 36:3–19.  https://doi.org/10.1007/s10669-016-9584-7 CrossRefGoogle Scholar
  51. Rastoin J, Ghersi G (2010) Le système alimentaire mondial: concepts et méthodes, analyses et dynamiques. Collection Synthèses, ParisCrossRefGoogle Scholar
  52. Rigolot C, de Voil P, Douxchamps S, Prestwidge D, van Wijk M, Thornton PK, Rodriguez D, Henderson B, Medina D, Herrero M (2017) Interactions between intervention packages, climatic risk, climate change and food security in mixed crop–livestock systems in Burkina Faso. Agric Syst 151:217–224.  https://doi.org/10.1016/j.agsy.2015.12.017 CrossRefGoogle Scholar
  53. Rist S, Golay C, Bürgi Bonanomi E, Delgado F, Kiteme B, Haller T, Ifejika Speranza C (2016) Towards Food Sustainability: Reshaping the coexistence of different food systems in South America and Africa. Towards Food Sustainability Working Paper No. 1: Project description, University of BernGoogle Scholar
  54. Rist S, Jacobi J (2016) Selection of Food Systems in Bolivia and Kenya and Methods of Analysis. Towards Food Sustainability Working Paper No. 2. Bern, Switzerland: Centre for Development and Environment (CDE), University of BernGoogle Scholar
  55. Rodrigues TE, Alpendurada MF, Ramos F, Pardal MA (2018) Environmental and human health risk indicators for agricultural psticides in estuaries. Ecotox Environ Safe 150:224–231.  https://doi.org/10.1016/j.ecoenv.2017.12.047 CrossRefGoogle Scholar
  56. Rotz S, Fraser EDG (2015) Resilience and the industrial food system: analyzing the impacts of agricultural industrialization on food system vulnerability. J Environ Stud Sci 5:459–473.  https://doi.org/10.1007/s13412-015-0277-1 CrossRefGoogle Scholar
  57. Sage C (2014) The transition movement and food sovereignty: from local resilience to global engagement in food system transformation. J Consum Cult 14:254–275CrossRefGoogle Scholar
  58. Scherer CW, Cho H (2003) A social network contagion theory of risk perception. Risk Anal 23:261–267.  https://doi.org/10.1111/1539-6924.00306 CrossRefGoogle Scholar
  59. Slovic P (1987) Perception of risk. Science 236:280–285CrossRefGoogle Scholar
  60. Steg L, Sivers I (2000) Cultural theory and Indvidual perceptions of environmental risks. Environ Behav 321:250–269CrossRefGoogle Scholar
  61. Suárez R, Camburn M, Crepos S (2010) El pequeño productor en el “cluster” de la soya. Caso cruceño. Probioma, Santa Cruz de la SierraGoogle Scholar
  62. Sukhdev P, May P, Müller A (2016) Fix food metrics. For sustainable, equitable nutrition we must count the true global costs and benefits of food production. Nature 540:33–34CrossRefGoogle Scholar
  63. Tanner T, Lewis D, Wrathall D, Bronen R, Cradock-Henry N, Huq S, Lawless C, Nawrotzki R, Prasad V, Rahman MA, Alaniz R, King K, McNamara K, Nadiruzzaman M, Henly-Shepard S, Thomalla F (2015) Livelihood resilience in the face of climate change. Nature Clim Change 5:23–26.  https://doi.org/10.1038/nclimate2431 CrossRefGoogle Scholar
  64. Tierney K (2014) The social roots of risk: producing disasters, promoting resilience. Stanford University Press, StanfordGoogle Scholar
  65. Toledo D (2016) Estudio de caso Yateirenda, la tierra de la miel de señorita. Movimiento por La Tierra, La PazGoogle Scholar
  66. Urioste M (2012) Concentration and "foreignisation" of land in Bolivia. Can J Dev Stud 33:439–457.  https://doi.org/10.1080/02255189.2012.743878 CrossRefGoogle Scholar
  67. Wachinger G, Renn O, Begg C, Kuhlicke C (2013) The risk perception paradox—implications for governance and communication of natural hazards. Risk Anal 33:1049–1065.  https://doi.org/10.1111/j.1539-6924.2012.01942.x CrossRefGoogle Scholar
  68. Wiesmann U (1998) Sustainable regional development in rural Africa: Conceptual framework and case studies from Kenya. Habilitation, University of BernGoogle Scholar
  69. Wiesmann U, Gichuki F, Kiteme B, Liniger H (2000) Mitigating conflicts over scarce water resources. Experiences from the highland-lowland system of Mount Kenya. Mt Res Dev 20:10–15CrossRefGoogle Scholar
  70. Wilkinson I (2001) Social theories of risk perception: at once indispensable and insufficient. In: Curr Sociol 49:1–22 doi:0011–3921(200101)49:1;1–22:016395, vol 49, pp 1–22Google Scholar
  71. Zaehringer JG, Wambugu G, Kiteme B, Eckert S (2018) How do large-scale agricultural investments affect land use and the environment in the western slopes of Mount Kenya? Empirical evidence based on small-scale farmers' perceptions and remote sensing. J Envion Manage 213:79–89.  https://doi.org/10.1016/j.jenvman.2018.02.019 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Johanna Jacobi
    • 1
    Email author
  • Stellah Mukhovi
    • 2
  • Aymara Llanque
    • 3
  • Daniela Toledo
    • 4
  • Chinwe Ifejika Speranza
    • 1
    • 5
  • Fabian Käser
    • 6
  • Horacio Augstburger
    • 1
  • José Manuel Freddy Delgado
    • 3
  • Boniface P. Kiteme
    • 7
  • Stephan Rist
    • 1
    • 5
  1. 1.Centre for Development and Environment (CDE)University of BernBernSwitzerland
  2. 2.Department of Geography and Environmental StudiesUniversity of NairobiNairobiKenya
  3. 3.AgrucoUniversidad Mayor de San SimónCochabambaBolivia
  4. 4.Instituto de Antropología y ArqueologíaUniversidad Mayor de San AndrésLa PazBolivia
  5. 5.Institute of GeographyUniversity of BernBernSwitzerland
  6. 6.Institute of Social AnthropologyUniversity of BernBernSwitzerland
  7. 7.Centre for Training and Integrated Research in Arid and Semi-Arid Land DevelopmentNanyukiKenya

Personalised recommendations