Regional Environmental Change

, Volume 19, Issue 2, pp 313–324 | Cite as

Atmospheric Carbon Dioxide variability at Aigüestortes, Central Pyrenees, Spain

  • Roger CurcollEmail author
  • Lluís Camarero
  • Montse Bacardit
  • Alba Àgueda
  • Claudia Grossi
  • Esperança Gacia
  • Anna Font
  • Josep-Anton Morguí
Original Article


In order to improve the understanding of the carbon cycle in the Pyrenean region, two atmospheric monitoring mountain stations were set up within the Long-Term Ecological Research node of Aigüestortes i Estany de Sant Maurici at Central Pyrenees, Spain. The atmospheric concentration of carbon dioxide (CO2) was measured over 2008–2014 and 2010–2014 at Estany Llong (ELL) site and Centre de Recerca d’Alta Muntanya (CRAM), respectively. Measurements were carried out fortnightly off-line with high precision instrumentation at ELL and every minute online with a lower precision sensor at CRAM in conjunction with meteorological variables. The two datasets were analyzed in this study, quantifying whenever possible annual growth rates (AGR), seasonal variability, and diurnal amplitudes. Results were also compared with the NOAA Marine Boundary Layer (MBL) reference product and CO2 data from other background monitoring stations. Four-harmonics adjusted CO2 data from ELL showed a high correlation with the NOAA MBL reference product for the same latitude (Spearman’s rho ρ = 0.96). In addition, AGRs of CO2 at ELL correlated well with those observed at Mace Head (MHD) station (ρ = 0.94), suggesting that ELL can be considered a background station. Winter CRAM CO2 data was not statistically different from ELL data, while in summer, it was 5.5 ppm lower on average, suggesting a higher photosynthesis uptake. The amplitude of the CO2 diurnal cycle at CRAM was found to be exponentially related to the local mean daily temperature and dependent on forthcoming wind sector (N-NW or E-SE-S-SW). An increase in CRAM CO2 concentrations was observed under N-NW winds during daytime, which could be related to traffic emissions. This study demonstrates that the use of CO2 sensors with low precision but continuously corrected and periodically calibrated can be used for the study of local and regional CO2 sources and sinks.


CO2 Mountain site LTER Long-Term Ecological Research Atmospheric measurements Pyrenees 



The authors would like to acknowledge the people from the Aigüestortes i Estany de Sant Maurici National Park, especially Mercè Aniz, for their support on this research. We would also like to thank the University of Barcelona (UB) for their actions and help in installing a continuous measurement station at the Centre de Recerca d’Alta Muntanya (CRAM). We finally thank all the people who participated in the samplings, particularly Helena Parga, Laura Agraz, Rober Sanchez, Cristina Cereza, Montserrat Recolons, Manel Nofuentes, Silvia Borras, Lidia Cañas, Eusebi Vazquez, and Paola Occhipinti. We used the Marine Boundary Layer reference product kindly provided by E. Dlugokencky, K. Masarie, P. Lang, and P. Tans from NOAA. We used the ObsPack CO2 flask data from Mace Head, CIBA, and Monte Cimone stations. We thank all measurement groups for submitting CO2 concentration data to the ObsPack-GLOBALVIEW product.

Funding information

This work has been mainly funded by own resources of the LAO-Climadat Lab at IC3 and by the Fluxpyr project (POCTEFA Program EFA 34/08 - Interreg IV-A). Data is available through virtual access provided and funded in the frame of eLTER H2020 - European Long-Term Ecosystem and Socio-Ecological Research Infrastructure (EC project GA: 654359; INFRAIA; 2015–2019).

Supplementary material

10113_2018_1443_Fig7_ESM.png (14.1 mb)
Figure S1

General location of Aigüestortes Long Term Ecological Research site in the Pyrenees chain (left). Location of Centre de Recerca d’Alta Muntanya (CRAM) and Estany Llong (ELL) stations in the park (top-center). Corine land cover maps from the cartography of habitats in Catalonia (Carreras and Diego 2007) around CRAM (top left) and ELL (bottom left). (PNG 14442 kb)

10113_2018_1443_MOESM1_ESM.tiff (6.6 mb)
High resolution image (TIFF 6788 kb)
10113_2018_1443_MOESM2_ESM.pdf (16 kb)
Figure S2 Schematic for the CO2 analysis of flask samples using two Licor7000 analyzers. (PDF 15 kb)
10113_2018_1443_MOESM3_ESM.pdf (14 kb)
Figure S3 Diurnal and annual CO2 variability at Centre de Recerca d’Alta Muntanya (CRAM). Trend level plot for CO2 at CRAM for 2010, 2011, 2012 and 2013. (PDF 14 kb)


  1. Albentosa Sánchez LM (1973) Los climas de Catalunya. Estudio de climatología dinámica. Phd Thesis. University of BarcelonaGoogle Scholar
  2. Andrews AE, Kofler JD, Trudeau ME, Williams JC, Neff DH, Masarie KA, Chao DY, Kitzis DR, Novelli PC, Zhao CL, Dlugokencky EJ, Lang PM, Crotwell MJ, Fischer ML, Parker MJ, Lee JT, Baumann DD, Desai AR, Stanier CO, De Wekker SFJ, Wolfe DE, Munger JW, Tans PP (2014) CO2, CO, and CH4 measurements from tall towers in the NOAA earth system research laboratory’s global greenhouse gas reference network: instrumentation, uncertainty analysis, and recommendations for future high-accuracy greenhouse gas monitoring efforts. Atmos Meas Tech 7:647–687. CrossRefGoogle Scholar
  3. Angert A, Biraud S, Bonfils C, Henning CC, Buermann W, Pinzon J, Tucker CJ, Fung I (2005) Drier summers cancel out the CO2 uptake enhancement induced by warmer springs. Proc Natl Acad Sci 102:10823–10827. CrossRefGoogle Scholar
  4. Bacardit M, Camarero L (2009) Fluxes of Al, Fe, Ti, Mn, Pb, Cd, Zn, Ni, Cu, and As in monthly bulk deposition over the Pyrenees (SW Europe): the influence of meteorology on the atmospheric component of trace element cycles and its implications for high mountain lakes. J Geophys Res Biogeosci 114:1–17. CrossRefGoogle Scholar
  5. Bakwin PS, Davis KJ, Yi C, Wofsy SC, Munger JW, Haszpra L, Barcza Z (2004) Regional carbon dioxide fluxes from mixing ratio data. Tellus B 56:301–311. CrossRefGoogle Scholar
  6. Bamberger I, Oney B, Brunner D, Henne S, Leuenberger M, Buchmann N, Eugster W (2017) Observations of atmospheric methane and carbon dioxide mixing ratios: tall-tower or mountain-top stations? Bound-Layer Meteorol 164:135–159. CrossRefGoogle Scholar
  7. Bergamaschi P, Krol M, Meirink JF, Dentener F, Segers a, van Aardenne J, Monni S, Vermeulen AT, Schmidt M, Ramonet M, Yver C, Meinhardt F, Nisbet EG, Fisher RE, O’Doherty S, Dlugokencky EJ (2010) Inverse modeling of European CH4 emissions 2001–2006. J Geophys Res 115:D22309. CrossRefGoogle Scholar
  8. Berry J, Bjorkman O (1980) Photosynthetic response and adaptation to temperature in higher plants. Annu Rev Plant Physiol 31:491–543. CrossRefGoogle Scholar
  9. Bouwman AF (1989) The role of soils and land use in the greenhouse effect. Netherlands. J Agric Sci 37:13–19Google Scholar
  10. Bowman AW, Azzalini A (1997) Applied smoothing techniques for data analysis: the kernel approach with S-plus illustrations. Oxford University Press, OxfordGoogle Scholar
  11. Camarero L, Catalan J (1993) Chemistry of bulk precipitation in the central and eastern Pyrenees, northeast Spain. Atmos Environ Part A Gen Top 27:83–94. CrossRefGoogle Scholar
  12. Camarero L, Morguí J-A (2009) Recerca ecològica a llarg termini en el Parc Nacional: el node LTER-Aigüestortes. In: Actas de las VIII Jornadas sobre Investigación del Parque Nacional de Aigüestortes i Estany de Sant Maurici. Espot, (Lleida). Departament de Medi Ambient i Habitatge, Generalitat de Catalunya. Barcelona. EspañaGoogle Scholar
  13. Camarero L, Bacardit M, de Diego A, Arana G (2017) Decadal trends in atmospheric deposition in a high elevation station: effects of climate and pollution on the long-range flux of metals and trace elements over SW Europe. Atmos Environ 167:542–552. CrossRefGoogle Scholar
  14. Camarero L, Catalan J, Morgui JA, Gacia E (2018) Daily meteorology (wind, air temperature, humidity, precipitation, radiation) from 2005–2017 for Aigüestortes LTER site. Accessed 20 Jun 2018
  15. Carreras J, Diego F (2007) Cartografia dels hàbitats a Catalunya 1: 50.000. In: General. CatalunyaGoogle Scholar
  16. Carrillo E, Ninot JM (1992) Flora i vegetació de les valls d’Espot i Boí. Arx. la secció Ciències l’Institut d’Estudis Catalans 99:474 + 350Google Scholar
  17. Carslaw DC, Ropkins K (2012) Openair — an R package for air quality data analysis. Environ Model Softw 27–28:52–61. CrossRefGoogle Scholar
  18. Catalan J (1989) The winter cover of a high-mountain Mediterranean lake (Estany Redó, Pyrenees). Water Resour Res 25:519–527. CrossRefGoogle Scholar
  19. Chappuis E, Gacia E, Ballesteros E (2011) Changes in aquatic macrophyte flora over the last century in Catalan water bodies (NE Spain). Aquat Bot 95:268–277. CrossRefGoogle Scholar
  20. Chappuis E, Gacia E, Ballesteros E (2014) Environmental factors explaining the distribution and diversity of vascular aquatic macrophytes in a highly heterogeneous Mediterranean region. Aquat Bot 113:72–82. CrossRefGoogle Scholar
  21. Chevallier F, Ciais P, Conway TJ, Aalto T, Anderson BE, Bousquet P, Brunke EG, Ciattaglia L, Esaki Y, Fröhlich M, Gomez A, Gomez-Pelaez AJ, Haszpra L, Krummel PB, Langenfelds RL, Leuenberger M, MacHida T, Maignan F, Matsueda H, Morguí JA, Mukai H, Nakazawa T, Peylin P, Ramonet M, Rivier L, Sawa Y, Schmidt M, Steele LP, Vay SA, Vermeulen AT, Wofsy S, Worthy D (2010) CO2 surface fluxes at grid point scale estimated from a global 21 year reanalysis of atmospheric measurements. J Geophys Res Atmos 115:1–17. CrossRefGoogle Scholar
  22. Ciais P, Peylin P, Bousquet P (2000) Regional biospheric carbon fluxes as inferred from atmospheric CO2 measurements. Ecol Appl 10:1574. Google Scholar
  23. Ciais P, Rayner P, Chevallier F, Bousquet P, Logan M, Peylin P, Ramonet M (2010) Atmospheric inversions for estimating CO2 fluxes: methods and perspectives. Clim Chang 103:69–92. CrossRefGoogle Scholar
  24. Ciattaglia L (1983) Interpretation of atmospheric CO2 measurements at Mt. Cimone (Italy) related to wind data. J Geophys Res 88:1331. CrossRefGoogle Scholar
  25. Ciattaglia L, Cundari V, Colombo T (1987) Further measurements of atmospheric carbon dioxide at Mt. Cimone, Italy: 1979–1985. Tellus B 39 B:13–20. CrossRefGoogle Scholar
  26. Colombo T, Santaguida R, Capasso A, Calzolari F, Evangelisti F, Bonasoni P (2000) Biospheric influence on carbon dioxide measurements in Italy. Atmos Environ 34:4963–4969. CrossRefGoogle Scholar
  27. Conway TJ, Tans PP, Waterman LS, Thoning KW, Kitzis DR, Masarie KA, Zhang N (1994) Evidence for interannual variability of the carbon cycle from the National Oceanic and Atmospheric Administration Climate Monitoring and Diagnostics Laboratory Global Air Sampling Network. J Geophys Res - Atmos 99:22831–22855. CrossRefGoogle Scholar
  28. Cooperative Global Atmospheric Data Integration Project. 2013 updated annually. M compilation of synchronized and gap-filled atmospheric carbon dioxide records for the period 1979–2012 (2013) obspack_co2_1_GLOBALVIEW-CO2_2013_v1.0.4_2013-12-23 . Compiled by NOAA Global Monitoring Division: Boulder, Colorado, U.S.A. Accessed 1 Oct 2018
  29. Cooperative Global Atmospheric Data Integration Project; (2017): Multi-laboratory compilation of atmospheric carbon dioxide data for the period 1957–2016 (2017) obspack_co2_1_GLOBALVIEWplus_v3.2_2017_11_02; NOAA Earth System Research Laboratory, Global Monitoring Division. Accessed 1 Oct 2018
  30. Cristofanelli P, Brattich E, Decesari S, Landi TC, Maione M, Putero D, Tositti L, Bonasoni P (2018) The “O. Vittori” observatory at Mt. Cimone: a “Lighthouse” for the Mediterranean troposphere. High-Mountain Atmos Res SpringerBriefs Meteorol Springer, Cham. Google Scholar
  31. Crosson ER (2008) A cavity ring-down analyzer for measuring atmospheric levels of methane, carbon dioxide, and water vapor. Appl Phys B Lasers Opt 92:403–408. CrossRefGoogle Scholar
  32. Cundari V, Colombo T, Papini G, Benedicti G, Ciattaglia L (1990) Recent improvements on atmospheric CO2 measurements at Mt. Cimone observatory, Italy. Nuovo Cim C 13:871–882. CrossRefGoogle Scholar
  33. Cundari V, Colombo T, Ciattaglia L (1995) Thirteen years of atmospheric carbon dioxide measurements at Mt. Cimone station, Italy. Nuovo Cim C 18:33–47. CrossRefGoogle Scholar
  34. Curcoll R, Recolons M, Font A, Agraz L, Parga E, Bacardit E, Camarero L, Pueyo S, Rodó X, Morguí JA (2010) First 2 years of atmospheric CO2 measurements in the Estany Llong plain (2100 masl, Parc Nacional d’Aigüestortes i Estany de Sant Maurici, Pyrenees, Catalonia, Spain). In: EGU General Assembly Conference Abstracts. p 3608Google Scholar
  35. Dlugokencky EJ, Lang PM, Mund JW, Crotwell AM, Crotwell MJ, Thoning KW (2017a) Atmospheric carbon dioxide dry air mole fractions from the NOAA ESRL Carbon Cycle Cooperative Global Air Sampling Network.1968–2016, Version: 2017-07-28. Accessed 1 Oct 2018
  36. Dlugokencky EJ, Thoning KW, Lang PM, Tans PP (2017b) NOAA greenhouse gas reference from atmospheric carbon dioxide dry air mole fractions from the NOAA ESRL Carbon Cycle Cooperative Global Air Sampling Network. Accessed 1 Oct 2018
  37. Geels C, Gloor M, Ciais P, Bousquet P, Peylin P, Vermeulen a T, Dargaville R, Aalto T, Brandt J, Christensen JH, Frohn LM, Haszpra L, Karstens U, Rödenbeck C, Ramonet M, Carboni G, Santaguida R (2007) Comparing atmospheric transport models for future regional inversions over Europe - part 1: mapping the atmospheric CO2 signals. Atmos Chem Phys 7:3461–3479. CrossRefGoogle Scholar
  38. Gomez-Pelaez AJ, Ramos R (2011) Improvements in the carbon dioxide and methane continuous measurement programs at Izaña Global GAW Station (Spain) during 2007–2009. In: Rep. 15th WMO/IAEA Meet. Expert. Carbon Diox ide, Other Greenh. Gases, Relat. Tracer Meas. Tech. 7–10 Sept. 2009, GAW Rep. number 194, WMO TD 1553. Accessed 1 Oct 2018
  39. Goulden ML (1996) Exchange of carbon dioxide by a deciduous forest: response to interannual climate variability. Science (80-) 271:1576–1578. CrossRefGoogle Scholar
  40. Hase F, Frey M, Blumenstock T, Groß J, Kiel M, Kohlhepp R, Mengistu Tsidu G, Schäfer K, Sha MK, Orphal J (2015) Application of portable FTIR spectrometers for detecting greenhouse gas emissions of the major city Berlin. Atmos Meas Tech 8:3059–3068. CrossRefGoogle Scholar
  41. Hervàs A, Camarero L, Reche I, Casamayor EO (2009) Viability and potential for immigration of airborne bacteria from Africa that reach high mountain lakes in Europe. Environ Microbiol 11:1612–1623. CrossRefGoogle Scholar
  42. Houghton RA (2003) Revised estimates of the annual net flux of carbon to the atmosphere from changes in land use and land management 1850-2000. Tellus Ser B Chem Phys Meteorol 55:378–390. Google Scholar
  43. Hu C, Griffis TJ, Lee X, Millet DB, Chen Z, Baker JM, Xiao K (2018) Top-down constraints on anthropogenic CO2 emissions within an agricultural-urban landscape. J Geophys Res Atmos 123:4674–4694. CrossRefGoogle Scholar
  44. Le Quéré C, Andrew RM, Canadell JG, Sitch S, Korsbakken JI, Peters GP, Manning AC, Boden TA, Tans PP, Houghton RA, Keeling RF, Alin S, Andrews OD, Anthoni P, Barbero L, Bopp L, Chevallier F, Chini LP, Ciais P, Currie K, Delire C, Doney SC, Friedlingstein P, Gkritzalis T, Harris I, Hauck J, Haverd V, Hoppema M, Klein Goldewijk K, Jain AK, Kato E, Körtzinger A, Landschützer P, Lefèvre N, Lenton A, Lienert S, Lombardozzi D, Melton JR, Metzl N, Millero F, Monteiro PMSS, Munro DR, Nabel JEMSMS, Nakaoka SI, O’Brien K, Olsen A, Omar AM, Ono T, Pierrot D, Poulter B, Rödenbeck C, Salisbury J, Schuster U, Schwinger J, Séférian R, Skjelvan I, Stocker BD, Sutton AJ, Takahashi T, Tian H, Tilbrook B, van der Laan-Luijkx IT, van der Werf GR, Viovy N, Walker AP, Wiltshire AJ, Zaehle S, Ivar Korsbakken J, Peters GP, Manning AC, Boden TA, Tans PP, Houghton RA, Keeling RF, Alin S, Andrews OD, Anthoni P, Barbero L, Bopp L, Chevallier F, Chini LP, Ciais P, Currie K, Delire C, Doney SC, Friedlingstein P, Gkritzalis T, Harris I, Hauck J, Haverd V, Hoppema M, Klein Goldewijk K, Jain AK, Kato E, Körtzinger A, Landschützer P, Lefèvre N, Lenton A, Lienert S, Lombardozzi D, Melton JR, Metzl N, Millero F, Monteiro PMSS, Munro DR, Nabel JEMSMS, Nakaoka SI, O’Brien K, Olsen A, Omar AM, Ono T, Pierrot D, Poulter B, Rödenbeck C, Salisbury J, Schuster U, Schwinger J, Séférian R, Skjelvan I, Stocker BD, Sutton AJ, Takahashi T, Tian H, Tilbrook B, van der Laan-Luijkx IT, van der Werf GR, Viovy N, Walker AP, Wiltshire AJ, Zaehle S (2016) Global carbon budget 2016. Earth Syst Sci Data 8:605–649. CrossRefGoogle Scholar
  45. Levin I (1987) Atmospheric CO2 in continental European alternative approach to clean air CO2 data. Tellus 39B:21–28. CrossRefGoogle Scholar
  46. Lloyd J, Taylor J (1994) On the temperature dependence of soil respiration. Funct Ecol 8:315–323. CrossRefGoogle Scholar
  47. Marquis M, Tans P (2008) Climate change: carbon crucible. Science (80-) 320:460–461. CrossRefGoogle Scholar
  48. Masarie KA, Tans PP (1995) Extension and integration of atmospheric carbon dioxide data into a globally consistent measurement record. J Geophys Res 100:11593. CrossRefGoogle Scholar
  49. Mast MA, Wickl KP, Striegl RT, Clow WD (1998) Winter fluxes of CO2 and CH4 from subalpine soils in Rocky Mountain National Park, Colorado. Glob Biogeochem Cycles 12:607–620. CrossRefGoogle Scholar
  50. Meijer HAJ, Smid HM, Perez E, Keizer MG (1996) Isotopic characterisation of anthropogenic CO2 emissions using isotopic and radiocarbon analysis. Phys Chem Earth 21:483–487. CrossRefGoogle Scholar
  51. Merbold L, Steinlin C, Hagedorn F (2013) Winter greenhouse gas fluxes (CO2, CH4 and N2O) from a subalpine grassland. Biogeosciences 10:3185–3203. CrossRefGoogle Scholar
  52. Ninyerola M, Pons X, Roure JM, Martin VJ, Raso J, Clavero P (2003) Atles climàtic digital de Catalunya. In: Serv. Meteorològic Catalunya i Dep. Medi Ambient General. Catalunya Barcelona. Accessed 1 Oct 2018
  53. Peylin P, Law RM, Gurney KR, Chevallier F, Jacobson AR, Maki T, Niwa Y, Patra PK, Peters W, Rayner PJ, Rödenbeck C, Van Der Laan-Luijkx IT, Zhang X (2013) Global atmospheric carbon budget: results from an ensemble of atmospheric CO2 inversions. Biogeosciences 10:6699–6720. CrossRefGoogle Scholar
  54. Piao S, Sitch S, Ciais P, Friedlingstein P, Peylin P, Wang X, Ahlström A, Anav A, Canadell JG, Cong N, Huntingford C, Jung M, Levis S, Levy PE, Li J, Lin X, Lomas MR, Lu M, Luo Y, Ma Y, Myneni RB, Poulter B, Sun Z, Wang T, Viovy N, Zaehle S, Zeng N (2013) Evaluation of terrestrial carbon cycle models for their response to climate variability and to CO2 trends. Glob Chang Biol 19:2117–2132. CrossRefGoogle Scholar
  55. Pickers PA, Manning AC (2015) Investigating bias in the application of curve fitting programs to atmospheric time series. Atmos Meas Tech 8:1469–1489. CrossRefGoogle Scholar
  56. Pillai D, Gerbig C, Ahmadov R, Rödenbeck C, Kretschmer R, Koch T, Thompson R, Neininger B, Lavrié JV (2011) High-resolution simulations of atmospheric CO2 over complex terrain-representing the Ochsenkopf mountain tall tower. Atmos Chem Phys 11:7445–7464. CrossRefGoogle Scholar
  57. Pino D, Kaikkonen J-P, de Arellano JV-G (2013) Quantifying the uncertainties of advection and boundary layer dynamics on the diurnal carbon dioxide budget. J Geophys Res Atmos 118:9376–9392. CrossRefGoogle Scholar
  58. Post WM, Peng T-HH, Emanuel WR, King AW, Dale VH, DeAngelis DL (1990) The global carbon cycle. Am Sci 78:892–895Google Scholar
  59. Potter CSC, Randerson J (1993) Terrestrial ecosystem production: a process model based on global satellite and surface data. Glob Biogeochem Cycles 7:811–841. CrossRefGoogle Scholar
  60. Pumpanen J, Ilvesniemi H, Kulmala L, Siivola E, Laakso H, Kolari P, Helenelund C, Laakso M, Uusimaa M, Hari P (2008) Respiration in boreal forest soil as determined from carbon dioxide concentration profile. Soil Sci Soc Am J 72:1187. CrossRefGoogle Scholar
  61. Randerson JT, Field CB, Fung IY, Tans PP (1999) Increases in early season ecosystem uptake explain recent changes in the seasonal cycle of atmospheric CO2 at high northern latitudes. Geophys Res Lett 26:2765–2768. CrossRefGoogle Scholar
  62. Reichstein M, Falge E, Baldocchi D, Papale D, Aubinet M, Berbigier P, Bernhofer C, Buchmann N, Gilmanov T, Granier A, Grunwald T, Havrankova K, Ilvesniemi H, Janous D, Knohl A, Laurila T, Lohila A, Loustau D, Matteucci G, Meyers T, Miglietta F, Ourcival J-M, Pumpanen J, Rambal S, Rotenberg E, Sanz M, Tenhunen J, Seufert G, Vaccari F, Vesala T, Yakir D, Valentini R (2005) On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Glob Chang Biol 11:1424–1439. CrossRefGoogle Scholar
  63. Rella CW, Chen H, Andrews AE, Filges A, Gerbig C, Hatakka J, Karion A, Miles NL, Richardson SJ, Steinbacher M, Sweeney C, Wastine B, Zellweger C (2013) High accuracy measurements of dry mole fractions of carbon dioxide and methane in humid air. Atmos Meas Tech 6:837–860. CrossRefGoogle Scholar
  64. Richardson SJ, Miles NL, Davis KJ, Crosson ER, Rella CW, Andrews AE (2012) Field testing of cavity ring-down spectroscopy analyzers measuring carbon dioxide and water vapor. J Atmos Ocean Technol 29:397–406. CrossRefGoogle Scholar
  65. Rigby M, Toumi R, Fisher R, Lowry D, Nisbet EG (2008) First continuous measurements of CO2 mixing ratio in central London using a compact diffusion probe. Atmos Environ 42:8943–8953. CrossRefGoogle Scholar
  66. Rödenbeck C, Houweling S, Gloor M, Heimann M (2003) CO2 flux history 1982–2001 inferred from atmospheric data using a global inversion of atmospheric transport. Atmos Chem Phys 3:1919–1964. CrossRefGoogle Scholar
  67. Sánchez ML, Pérez IA, García MA (2010) Study of CO2 variability at different temporal scales recorded in a rural Spanish site. Agric For Meteorol 150:1168–1173. CrossRefGoogle Scholar
  68. Schibig MF, Steinbacher M, Buchmann B, Van Der Laan-Luijkx IT, Van Der Laan S, Ranjan S, Leuenberger MC (2015) Comparison of continuous in situ CO2 observations at Jungfraujoch using two different measurement techniques. Atmos Meas Tech 8:57–68. CrossRefGoogle Scholar
  69. Schmidt M (2003) The Schauinsland CO2 record: 30 years of continental observations and their implications for the variability of the European CO2 budget. J Geophys Res 108:4619. CrossRefGoogle Scholar
  70. Smith NG, Dukes JS (2013) Plant respiration and photosynthesis in global-scale models: incorporating acclimation to temperature and CO2. Glob Chang Biol 19:45–63. CrossRefGoogle Scholar
  71. Sturm P, Leuenberger M, Sirignano C, Neubert REM, Meijer HAJ, Langenfelds R, Brand WA, Tohjima Y (2004) Permeation of atmospheric gases through polymer O-rings used in flasks for air sampling. J Geophys Res Atmos 109:n/a-n/a.
  72. Tans PP, Fung IY, Takahashi T (1990a) Observational constraints on the global atmospheric CO2 budget. Science (80-) 247:1431–1438. CrossRefGoogle Scholar
  73. Tans PP, Thoning KW, Elliott WP, Conway TJ (1990b) Error estimates of background atmospheric CO2 patterns from weekly flask samples. J Geophys Res 95:14063. CrossRefGoogle Scholar
  74. Thoning KW, Tans PP, Komhyr WD (1989) Atmospheric carbon dioxide at Mauna Loa observatory: 2. Analysis of the NOAA GMCC data, 1974-1985. J Geophys Res Atmos 94:8549–8565. CrossRefGoogle Scholar
  75. Turnbull JC, Sweeney C, Karion A, Newberger T, Lehman SJ, Tans PP, Davis KJ, Lauvaux T, Miles NL, Richardson SJ, Cambaliza MO, Shepson PB, Gurney K, Patarasuk R, Razlivanov I (2015) Toward quantification and source sector identification of fossil fuel CO2 emissions from an urban area: results from the INFLUX experiment. J Geophys Res Atmos 120:292–312. CrossRefGoogle Scholar
  76. Vaisala (2017) Vaisala CARBOCAP Carbon Dioxide Probe GMP343. In: Vaisala Oyj, Finl. Accessed 1 Oct 2018
  77. Verger A, Filella I, Baret F, Peñuelas J (2016) Vegetation baseline phenology from kilometric global LAI satellite products. Remote Sens Environ 178:1–14. CrossRefGoogle Scholar
  78. Vogel FR, Hammer S, Steinhof A, Kromer B, Levin I (2010) Implication of weekly and diurnal 14C calibration on hourly estimates of CO-based fossil fuel CO2 at a moderately polluted site in southwestern Germany. Tellus Ser B Chem Phys Meteorol 62:512–520. CrossRefGoogle Scholar
  79. Young SG, Bowman AW (1995) Non-parametric analysis of covariance. Biometrics 51:920–931. CrossRefGoogle Scholar
  80. Zhao CL, Tans PP (2006) Estimating uncertainty of the WMO mole fraction scale for carbon dioxide in air. J Geophys Res 111:D08S09. Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institut Català de Ciències del Clima, IC3BarcelonaSpain
  2. 2.Institut de Ciència i Tecnologia Ambientals, ICTA-UABBarcelonaSpain
  3. 3.Associació LTER-AigüestortesBarcelonaSpain
  4. 4.Departament d’Enginyeria QuímicaUniversitat Politècnica de Catalunya (UPC)BarcelonaSpain
  5. 5.Centre d’Estudis Avançats de Blanes, CEAB-CSICGironaSpain
  6. 6.Centre de Lauegi, Conselh Generau d’AranLleidaSpain
  7. 7.Institut de Tècniques Energètiques (INTE), UPCBarcelonaSpain
  8. 8.Departament de Fisica Nuclear, UPCBarcelonaSpain
  9. 9.Environmental Research Group, MRC PHE Centre for Environment and HealthKing’s College LondonLondonUK
  10. 10.Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals (BEECA) UBBarcelonaSpain

Personalised recommendations