Advertisement

Regional Environmental Change

, Volume 19, Issue 3, pp 819–831 | Cite as

A quantitative assessment of mid-term risks of global change on forests in Western Mediterranean Europe

  • Assu Gil-Tena
  • Alejandra Morán-Ordóñez
  • Lluís Comas
  • Javier Retana
  • Jordi Vayreda
  • Lluís BrotonsEmail author
Original Article

Abstract

Assessment of potential forests’ threats due to multiple global change components is urgently needed since increasing exposure to them could undermine their future persistence. We aim to assess the risks to the persistence of monospecific forests in Western Mediterranean Europe posed by climate change, fire, and land-use changes (i.e., deforestation) in the short and medium terms (horizon 2040). We specifically evaluate whether the degree of risk related to the likelihood of hazard occurrence varies depending on seral stage, tree species, and climate gradients. We performed the risk assessment on forests of Catalonia (NE Spain) through a combination of correlative and process-based modeling approaches and future global change scenarios. Overall, climate suitability of forests showed a general decrease by 2040, with the exception of xeric Pinus halepensis forests mainly distributed in the driest climate of the study area. Forest stands dominated by low drought-tolerant species were at higher risk of losing climatic suitability than forests dominated by Mediterranean species. The highest fire and deforestation risks were predicted for forest stands in dry climate where human pressures are higher. Nevertheless, high deforestation risk was also attained outside the driest areas. Deforestation risk was lower in old-growth than in younger stands, whereas old-growth forests in the Wet climate or dominated by Pinus sylvestris were projected to be at higher fire risk than younger forests. Our results suggest that conservation actions should target forest stands in dry climate. Moreover, old-growth forest stands should also be prioritized due to their particular sensitivity to disturbances and their high ecological value.

Keywords

Climate change Deforestation Fires IPCC-SRES climate projections Monospecific forests Old-growth forests 

Notes

Acknowledgements

This work was supported by the Spanish Ministry of Economy, Industry and Competitiveness (CGL2014-59742, CGL2017-89999-C2-2-R, being a contribution to the ECOMETAS network (CGL2016-81706-REDT)), the EU’s 7FP projects (ERA-NET FORESTERRA project Informed 29183 and ERANET-SUMFORESTS project FutureBioEcon PCIN-2017-052), and the Generalitat de Catalunya (CERCA Program). M. N. and M. B. (UAB) generate climatic predictions within the MONTES-Consolider project. We thank the Fire Prevention Service (Generalitat de Catalunya) for providing data on fire statistics. Population data was gathered from the Spanish Statistical Office. A. G-T and AMO were supported by the Spanish Government through the “Juan de la Cierva” fellowship program (JCI-2012-12089 and IJCI-2016-30349, respectively).

Supplementary material

10113_2018_1437_MOESM1_ESM.docx (1.1 mb)
ESM 1 (DOCX 1120 kb)
10113_2018_1437_MOESM2_ESM.docx (994 kb)
ESM 2 (DOCX 994 kb)

References

  1. Alberto FJ, Aitken SN, Alía R, González-Martínez SC, Hänninen H, Kremer A, Lefèvre F, Lenormand T, Yeaman S, Whetten R, Savolainen O (2013) Potential for evolutionary responses to climate change—evidence from tree populations. Glob Chang Biol 19:1645–1661.  https://doi.org/10.1111/gcb.12181 CrossRefGoogle Scholar
  2. Alía R, Alba N, Agúndez D, Iglesias S, (coords) (2005) Manual para la comercialización y producción de semillas y plantas forestales. Materiales de base y de reproducción. Serie Forestal. DGB, MadridGoogle Scholar
  3. Ameztegui A, Brotons L, Coll L (2010) Land-use changes as major drivers of mountain pine (Pinus uncinata Ram.) expansion in the Pyrenees. Glob Ecol Biogeogr 19:632–641.  https://doi.org/10.1111/j.1466-8238.2010.00550.x Google Scholar
  4. Anaya-Romero M, Muñoz-Rojas M, Ibáñez B, Marañón T (2016) Evaluation of forest ecosystem services in Mediterranean areas. A regional case study in South Spain. Ecosyst Serv 20:82–90.  https://doi.org/10.1016/j.ecoser.2016.07.002 CrossRefGoogle Scholar
  5. Aquilué N, De Cáceres M, Fortin M-J, Fall A, Brotons L (2017) A spatial allocation procedure to model land-use/land-cover changes: accounting for occurrence and spread processes. Ecol Model 344:73–86.  https://doi.org/10.1016/j.ecolmodel.2016.11.005 CrossRefGoogle Scholar
  6. Barbati A, Salvati R, Ferrari B, Di Santo D, Quatrini A, Portoghesi L, Travaglini D, Iovino F, Nocentini S (2012) Assessing and promoting old-growthness of forest stands: lessons from research in Italy. Plant Biosyst 146(1):167–174.  https://doi.org/10.1080/11263504.2011.650730 CrossRefGoogle Scholar
  7. Barros A, Pereira J (2014) Wildfire selectivity for land cover type: does size matter? PLoS One 9:e84760.  https://doi.org/10.1371/journal.pone.0084760 CrossRefGoogle Scholar
  8. Benito Garzón M, Sánchez de Dios R, Sainz Ollero H (2009) Effects of climate change on the distribution of Iberian tree species. Appl Veg Sci 11:169–178.  https://doi.org/10.3170/2008-7-18348 CrossRefGoogle Scholar
  9. Binkley D, Sisk T, Chambers C, Springer J, Block W (2007) The role of old-growth forests in frequent-fire landscapes. Ecol Soc 12(2):18. [online] URL: http://www.ecologyandsociety.org/vol12/iss2/art18/.  https://doi.org/10.5751/ES-02170-120218 CrossRefGoogle Scholar
  10. Brotons L, Aquilué N, De Cáceres M, Fortin M-J, Fall A (2013) How fire history, fire suppression practices and climate change affect wildfire regimes in Mediterranean landscapes. PLoS One 8:e62392.  https://doi.org/10.1371/journal.pone.0062392 CrossRefGoogle Scholar
  11. Catalán B, Saurí D, Serra P (2008) Urban sprawl in the Mediterranean? Patterns of growth and change in the Barcelona Metropolitan Region 1993–2000. Landsc Urban Plan 85:174–184.  https://doi.org/10.1016/j.landurbplan.2007.11.004 CrossRefGoogle Scholar
  12. Cervera T, Garrabou R, Tello E (2015) Política forestal y evolución de los bosques en Cataluña desde el siglo XIX hasta la actualidad. Investig Hist Econ (IHE)/J Span Econ Hist Assoc 11(02):116–127.  https://doi.org/10.1016/j.ihe.2014.04.002 Google Scholar
  13. Ciais P, Schelhaas MJ, Zaehle S, Piao SL, Cescatti A, Liski J, Luyssaert S, Le-Maire G, Schulze ED, Bouriaud O, Freibauer A, Valentini R, Nabuurs GJ (2008) Carbon accumulation in European forests. Nat Geosci 1:425–429.  https://doi.org/10.1038/ngeo233 CrossRefGoogle Scholar
  14. de Mendiburu F (2015) Agricolae: statistical procedures for agricultural research. R package version 1.2–3. http://CRAN.R-project.org/package=agricolae
  15. Doblas-Miranda E, Martínez-Vilalta J, Lloret F, Álvarez A, Ávila A, Bonet FJ, Brotons L, Castro J, Curiel Yuste J, Díaz M, Ferrandis P, García-Hurtado E, Iriondo JM, Keenan TF, Latron J, Llusià J, Loepfe L, Mayol M, Moré G, Moya D, Peñuelas J, Pons X, Poyatos R, Sardans J, Sus O, Vallejo VR, Vayreda J, Retana J (2014) Reassessing global change research priorities in Mediterranean terrestrial ecosystems: how far have we come and where do we go from here? Glob Ecol Biogeogr 24:25–43.  https://doi.org/10.1111/geb.12224 CrossRefGoogle Scholar
  16. Ellison D, Morris CE, Locatelli B, Sheil D, Cohen J, Murdiyarso D, Gutierrez V, Noordwijk M, Creed IF, Pokorny J, Gaveau D, Spracklen DV, Tobella AB, Ilstedt U, Teuling AJ, Gebrehiwot SG, Sands DC, Muys B, Verbist B, Springgay E, Sugandi Y, Sullivan CA (2017) Trees, forests and water: cool insights for a hot world. Glob Environ Chang 43:51–61.  https://doi.org/10.1016/j.gloenvcha.2017.01.002 CrossRefGoogle Scholar
  17. FAO (2013) State of Mediterranean forests 2013. E-ISBN 978-92-5-107538-8Google Scholar
  18. Fernández-de-Uña L, Cañellas I, Gea-Izquierdo G (2015) Stand competition determines how different tree species will cope with a warming climate. PLoS One 10(3):e0122255.  https://doi.org/10.1371/journal.pone.0122255 CrossRefGoogle Scholar
  19. Frey SJK, Hadley AS, Johnson SL, Schulze M, Jones JA, Betts MG (2016) Spatial models reveal the microclimatic buffering capacity of old-growth forests. Sci Adv 2(4):e1501392.  https://doi.org/10.1126/sciadv.1501392 CrossRefGoogle Scholar
  20. Garcia RA, Cabeza M, Altwegg R, Araújo MB (2016) Do projections from bioclimatic envelope models and climate change metrics match? Glob Ecol Biogeogr 25:65–74.  https://doi.org/10.1111/geb.12386 CrossRefGoogle Scholar
  21. Gauquelin T, Michon G, Joffre R, Duponnois R, Génin D, Fady B, Bou Dagher-Kharrat M, Derridj A, Slimani S, Badri W, Alifriqui M, Auclair L, Simenel R, Aderghal M, Baudoin E, Galiana A, Prin Y, Sanguin H, Fernandez C, Baldy V (2016) Mediterranean forests, land use and climate change: a social-ecological perspective. Reg Environ Chang 18:623–636.  https://doi.org/10.1007/s10113-016-0994-3 CrossRefGoogle Scholar
  22. Gil-Tena A, Aquilué N, Duane A, De Cáceres M, Brotons L (2016) Mediterranean fire regime effects on pine-oak forest landscape mosaics under global change in NE Spain. Eur J For Res 135(2):403–416.  https://doi.org/10.1007/s10342-016-0943-1 CrossRefGoogle Scholar
  23. González-Olabarria JR, Mola-Yudego B, Coll L (2015) Different factors for different causes: analysis of the spatial aggregations of fire ignitions in Catalonia (Spain). Risk Anal 35(7):1197–1209.  https://doi.org/10.1111/risa.12339 CrossRefGoogle Scholar
  24. Gracia M, Comas L, Vayreda J, Batlle C, Ibàñez JJ (2011) Inventari de Boscos Singulars de Catalunya. CREAF, BellaterraGoogle Scholar
  25. Hanley JA, McNeil BJ (1982) The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143:29–36.  https://doi.org/10.1148/radiology.143.1.7063747 CrossRefGoogle Scholar
  26. Ibàñez JJ, Burriel JA (2010) Mapa de cubiertas del suelo de Cataluña: características de la tercera edición y relación con SIOSE. In: Ojeda J, Pita MF, Vallejo I (eds) Tecnologías de la Información Geográfica: La Información Geográfica al servicio de los ciudadanos. Secretariado de Publicaciones de la Universidad de Sevilla, Sevilla, pp 179–198Google Scholar
  27. IPCC (2014) In: Core Writing Team, Pachauri RK, Meyer LA (eds). Climate change 2014: synthesis report. Contribution of working groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, GenevaGoogle Scholar
  28. Keenan RJ, Read SM (2012) Assessment and management of old-growth forests in south eastern Australia. Plant Biosyst 146(1):214–222.  https://doi.org/10.1080/11263504.2011.650726 CrossRefGoogle Scholar
  29. Kuemmerle T, Levers C, Erb K, Estel S, Jepsen MR, Müller D, Plutzar C, Stürck J, Verkerk PJ, Verburg PH, Reenberg A (2016) Hotspots of land use change in Europe. Environ Res Lett 11(6):064020.  https://doi.org/10.1088/1748-9326/11/6/064020 CrossRefGoogle Scholar
  30. Lloret F, Solé A, Vayreda J, Estevan H, Terradas J (2009) Atles de les espècies llenyoses dels boscos de Catalunya. Lynx ediciones, BellaterraGoogle Scholar
  31. Lloret F, Martinez-Vilalta J, Serra-Diaz JM, Ninyerola N (2013) Relationship between projected changes in future climàtic suitability and demographic and functional traits of forest tree species in Spain. Clim Chang 120:449–462.  https://doi.org/10.1007/s10584-013-0820-6 CrossRefGoogle Scholar
  32. Loepfe L, Martinez-Vilalta J, Piñol J (2012) Management alternatives to offset climate change effects on Mediterranean fire regimes in NE Spain. Clim Chang 115:693–707.  https://doi.org/10.1007/s10584-012-0488-3 CrossRefGoogle Scholar
  33. Mansourian S, Rossi M, Vallauri D (2013) Ancient forests in the northern Mediterranean: neglected high conservation value areas. WWF, MarseilleGoogle Scholar
  34. Martín-Alcón S, Coll L, De Cáceres M, Guitart L, Cabré M, Just A, González-Olabarría JR (2015) Combining aerial LiDAR and multispectral imagery to assess postfire regeneration types in a Mediterranean forest. Can J For Res 45(7):856–866.  https://doi.org/10.1139/cjfr-2014-0430 CrossRefGoogle Scholar
  35. Martínez-Fernández J, Ruiz-Benito P, Zavala MA (2015) Recent land cover changes in Spain across biogeographical regions and protection levels: implications for conservation policies. Land Use Policy 44:62–75.  https://doi.org/10.1016/j.landusepol.2014.11.021 CrossRefGoogle Scholar
  36. Montserrat Aguadé D (1998) Situaciones sinópticas relacionadas con el inicio de grandes forestales en Cataluña. Nimbus 1-2:93–112Google Scholar
  37. Moré G, Pons X, Burriel JA, Castells R, Ibàñez JJ, Roijals X (2005) Generación de cartografía detallada de vegetación mediante procesamiento digital de imágenes Landsat, variables orográficas y climáticas. 6 Geomatic week, BarcelonaGoogle Scholar
  38. Moriondo M, Good P, Durao R, Bindi M, Giannakopoulos C, Corte-Real J (2006) Potential impact of climate change on fire risk in the Mediterranean area. Clim Res 31:85–95.  https://doi.org/10.3354/cr031085 CrossRefGoogle Scholar
  39. Nakicenovic N, Alcamo J, Davis G, Vries BD, Fenhann JV, Gaffin S, Gregory K, Grübler A, Jung TY, Kram T, Rovere ELL, Michaelis L, Mori S, Morita T, Pepper W, Pitcher H, Price L, Riahi K, Roehrl A, Rogner H-H, Sankovski A, Schlesinger M, Shukla P, Smith S, Swart R, Rooijen SV, Victor N, Dadi Z (2000) Special report on emissions scenarios. Special report of working group III of the Intergovernmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  40. Ninyerola M, Pons X, Roure JM (2005) Atlas Climático Digital de la Península Ibérica. Metodología y aplicaciones en bioclimatología y geobotánica. UAB, BellaterraGoogle Scholar
  41. Nocentini S, Coll L (2013) Mediterranean forests: human use and complex adaptive systems. In: Messier C, Puettmann KJ, Coates KD (eds) Managing forests as complex adaptive systems: building resilience to the challenge of global change. Routledge, New York, pp 214–243Google Scholar
  42. Pausas JG, Fernández-Muñoz S (2011) Fire regime changes in the Western Mediterranean Basin: from fuel-limited to drought-driven fire regime. Clim Chang 110:215–226.  https://doi.org/10.1007/s10584-011-0060-6 CrossRefGoogle Scholar
  43. Peñuelas J, Sardans J, Filella I, Estiarte M, Llusià J, Ogaya R, Carnicer J, Bartrons M, Rivas-Ubach A, Grau O, Pequero G, Margalef O, Pla-Rabés S, Stefanescu C, Asensio D, Preece C, Lui L, Verger A, Barbeta A, Achotegui-Castells A, Gargallo-Garriga A, Sperlich D, Farré-Armengol G, Fernández-Martínex M, Liu D, Zhang C, Urbina I, Camino-Serrano M, Vives-Ingla M, Stocker BD, Balzarolo M, Guerrierei R, Paucelle M, Marañón-Jiménez S, Bórnez-Mejías K, Zhaobin M, Descals A, Castellanos A, Terradas J (2017) Impacts of global change on Mediterranean forests and their services. Forests 8:1–37.  https://doi.org/10.3390/f8120463 CrossRefGoogle Scholar
  44. Puettmann KJ, Coates KD, Messier CC (2009) A critique of silviculture: managing for complexity. Island Press, Washington, DCGoogle Scholar
  45. Rodrigo A, Retana J, Picó FX (2004) Direct regeneration is not the only response of Mediterranean forests to large fires. Ecology 85:716–729.  https://doi.org/10.1890/02-0492 CrossRefGoogle Scholar
  46. Roques A, Rousselet J, Avci M, Avtzis DN, Basso A, Battisti A, Lahbib Ben Jamaa M, Bensidi A, Berardi L, Berretima W, Branco M, Chakali G, Cota E, Dautbasic M, Delb H, El Alaoui El Fels MA, El Mercht S, El Mokhefi M, Forster B, Garcia J, Georgiev G, Glavendekic MM, Goussard F, Halbig P, Henke L, Hernandez R, Hódar JA, Ipekdal K, Jurc M, Klimetzek D, Laparie M, Larsson S, Mateus E, Matosevic D, Meier F, Mendel Z, Meurisse N, Mihajlovic L, Mirchev P, Nasceski S, Nussbaumer C, Paiva M-R, Papazova I, Pino J, Podlesnik J, Poirot J, Protasov A, Rahim N, Sanchez Peña G, Santos H, Sauvard D, Schopf A, Simonato M, Tsankov G, Wagenhoff E, Yart A, Zamora R, Zamoum M, Robinet C (2015) Climate warming and past and present distribution of the processionary moths (Thaumetopoea spp.) in Europe, Asia Minor and North Africa. In: Roques A (ed) Processionary moths and climate change: an update, Quae edn. Springer, Dordrecht, pp 81–161Google Scholar
  47. Sala OE, Stuart Chapin F, III Armesto JJ, Berlow E, Bloomfield J, Dirzo R, Huber-Sanwald E, Huenneke LF, Jackson RB, Kinzig A, Leemans R, Lodge DM, Mooney HA, Oesterheld M, Poff NL, Sykes MT, Walker BH, Walker M, Wall DH (2000) Global biodiversity scenarios for the year 2100. Science 287:1770–1774.  https://doi.org/10.1126/science.287.5459.1770 CrossRefGoogle Scholar
  48. Sheffer E (2012) A review of the development of Mediterranean pine–oak ecosystems after land abandonment and afforestation: are they novel ecosystems? Ann For Sci 69:429–443.  https://doi.org/10.1007/s13595-011-0181-0 CrossRefGoogle Scholar
  49. Spake R, Ezard THG, Martin PA, Newton AC, Doncaster CP (2015) A meta-analysis of functional group responses to forest recovery outside of the tropics. Conserv Biol 226(6):1695–1703.  https://doi.org/10.1111/cobi.12548 CrossRefGoogle Scholar
  50. Spies TA, Hemstrom MA, Youngblood A, Hummel S (2006) Conserving old-growth forest diversity in disturbance-prone landscapes. Conserv Biol 20(2):351–362.  https://doi.org/10.1111/j.1523-1739.2006.00389.x CrossRefGoogle Scholar
  51. Swets JA (1988) Measuring the accuracy of diagnostic systems. Science 240:1285–1293.  https://doi.org/10.1126/science.3287615 CrossRefGoogle Scholar
  52. UNECE and FAO (2011) The European forest sector outlook study II. 2010–2030. Study paper 28. ISBN 978-92-1-117051-1Google Scholar
  53. Verburg PH, van Berkel DB, van Doorn AM, van Eupen M, van den Heiligenberg HARM (2010) Trajectories of land use change in Europe: a model-based exploration of rural futures. Landsc Ecol 25:217–232.  https://doi.org/10.1007/s10980-009-9347-7 CrossRefGoogle Scholar
  54. Vilà-Cabrera A, Martínez-Vilalta J, Vayreda J, Retana J (2011) Structural and climatic determinants of demographic rates of Scots pine forests across the Iberian Peninsula. Ecol Appl 21:1162–1172.  https://doi.org/10.1890/10-0647.1 CrossRefGoogle Scholar
  55. Villanueva JA (ed) (2005) Tercer Inventario Forestal Nacional (1997–2007). Ministerio de Medio Ambiente, MadridGoogle Scholar
  56. Zimmermann NE, Yoccoz NG, Edwards TC, Meier ES, Thuiller W, Guisan A, Schmatz DR, Pearman PB (2009) Climatic extremes improve predictions of spatial patterns of tree species. Proc Natl Acad Sci U S A 106:19723–19728.  https://doi.org/10.1073/pnas.0901643106 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.InForest Joint Research Unit, CTFC-CREAFSolsonaSpain
  2. 2.CREAFCerdanyola del VallésSpain
  3. 3.Univ Autònoma BarcelonaCerdanyola del VallésSpain
  4. 4.CSICCerdanyola del VallésSpain

Personalised recommendations