Advertisement

Future climatic suitability of the Emilia-Romagna (Italy) region for grape production

  • Nemanja Teslić
  • Mirjam Vujadinović
  • Mirjana Ruml
  • Arianna Ricci
  • Ana Vuković
  • Giuseppina P. Parpinello
  • Andrea Versari
Original Article

Abstract

Grape production is highly responsive to weather conditions and therefore very sensitive to climate change. To evaluate how viticulture in the traditional Italian wine region Emilia-Romagna could be affected by climate change, several bioclimatic indices describing the suitability for grapevine production were calculated for two future periods (2011–2040 and 2071–2100) using CORDEX (Coordinated Regional Climate Downscaling Experiment) high-resolution climate simulations under two Representative Concentration Pathways (RCP) scenarios—RCP 4.5 and RCP 8.5. The projections for both of the RCP scenarios showed that most of the Emilia-Romagna region will remain suitable for grape production during the period 2011–2040. By the end of the twenty-first century, the suitability to produce grapes in Emilia-Romagna could be threatened to a greater or smaller extent, depending on the scenario. During the period 2071–2100, the entire Emilia-Romagna region will be too hot for grape production under the RCP 8.5 scenario. Under the RCP 4.5 scenario, changes will be milder, suggesting that the Emilia-Romagna region could still be suitable for grape cultivation by the end of the twenty-first century but would likely require certain adjustments.

Keywords

Climate change Viticulture Emilia-Romagna Bioclimatic indices 

Notes

Acknowledgements

Miss Maria Mavronicola is thanked for English spell-checking.

Funding information

The first author (N.T.) acknowledges the Faculty of Agriculture, University of Belgrade, for providing support and also the Erasmus Mundus Joint EU-SEE PENTA program and the Fund for Young Talents of the Republic of Serbia for a PhD fellowship. Support was also provided by the Ministry of Education and Science of the Republic of Serbia within the framework of integrated and interdisciplinary research (Project 43007 “Studying climate change and its influence on the environment: Impacts, adaptation and mitigation”).

Supplementary material

10113_2018_1431_MOESM1_ESM.pdf (1 mb)
ESM 1 (PDF 1057 kb)

References

  1. Andrade C, Fraga H, Santos JA (2014) Climate change multi-model projections for temperature extremes in Portugal. Atmos Sci Lett 15:1–8.  https://doi.org/10.1002/asl2.485 CrossRefGoogle Scholar
  2. Bock A, Sparks T, Estrella N, Menzel A (2011) Changes in the phenology and composition of wine from Franconia, Germany. Clim Res 50:69–81.  https://doi.org/10.3354/cr01048 CrossRefGoogle Scholar
  3. Bois B, Zito S, Calonnec A (2017) Climate vs grapevine pests and diseases worldwide: the first results of a global survey. J Int Sci Vigne Vin 51:133–139.  https://doi.org/10.20870/oeno-one.2016.0.0.1780 CrossRefGoogle Scholar
  4. Deser C, Phillips A, Bourdette V, Teng H (2012) Uncertainty in climate change projections: the role of internal variability. Clim Dyn 38:527–546.  https://doi.org/10.1007/s00382-010-0977-x CrossRefGoogle Scholar
  5. Dunn MR, Lindesay JA, Howden M (2015) Spatial and temporal scales of future climate information for climate change adaptation in viticulture: a case study of user needs in the Australian winegrape sector. Aust J Grape Wine Res 21:226–239.  https://doi.org/10.1111/ajgw.12138 CrossRefGoogle Scholar
  6. Fraga H, Malheiro AC, Moutinho-Pereira J, Santos JA (2012) An overview of climate change impacts on European viticulture. Food Energy Secur 1:94–110.  https://doi.org/10.1002/fes3.14 CrossRefGoogle Scholar
  7. Fraga H, Malheiro AC, Moutinho-Pereira J, Santos JA (2013) Future scenarios for viticultural zoning in Europe: ensemble projections and uncertainties. Int J Biometeorol 57:909–925.  https://doi.org/10.1007/s00484-012-0617-8 CrossRefGoogle Scholar
  8. Fraga H, Malheiro AC, Moutinho-Pereira J, Jones GV, Alves F, Pinto JG, Santos JA (2014) Very high resolution bioclimatic zoning of Portuguese wine regions: present and future scenarios. Reg Environ Chang 14:295–306.  https://doi.org/10.1007/s10113-013-0490-y CrossRefGoogle Scholar
  9. Fraga H, Atauri AR, Malheiro AC, Santos JA (2016) Modelling climate change impacts on viticultural yield, phenology and stress conditions in Europe. Glob Chang Biol 22:3774–3788.  https://doi.org/10.1111/gcb.13382 CrossRefGoogle Scholar
  10. Frei P, Kotlarski S, Liniger MA, Schär C (2018) Future snowfall in the Alps: projections based on the EURO-CORDEX regional climate models. Cryosph 12:1–24.  https://doi.org/10.3929/ETHZ-B-000225616 CrossRefGoogle Scholar
  11. Hannah L, Roehrdanz PR, Ikegami M, Shepard AV, Shaw MR, Tabor G, Zhi L, Marquet PA, Hijmans RJ (2013) Climate change, wine, and conservation. Proc Natl Acad Sci U S A 110:6907–6912.  https://doi.org/10.1073/pnas.1210127110 CrossRefGoogle Scholar
  12. Huglin MP (1978) Nouveau mode d’évaluation des possibilités héliothermiques d’un milieu viticole. C R Acad Agric Fr 64:1117–1126Google Scholar
  13. IPCC (2007) Climate change 2007 synthesis report, intergovernmental panel on climate change [Core writing team IPCC]. IPCC, Geneva.  https://doi.org/10.1256/004316502320517344 CrossRefGoogle Scholar
  14. Jacob D, Petersen J, Eggert B, Alias A, Christensen OB, Bouwer LM, Braun A, Colette A, Déqué M, Georgievski G, Georgopoulou E, Gobiet A, Menut L, Nikulin G, Haensler A, Hempelmann N, Jones C, Keuler K, Kovats S, Kröner N, Kotlarski S, Kriegsmann A, Martin E, van Meijgaard E, Moseley C, Pfeifer S, Preuschmann S, Radermacher C, Radtke K, Rechid D, Rounsevell M, Samuelsson P, Somot S, Soussana JF, Teichmann C, Valentini R, Vautard R, Weber B, Yiou P (2014) EURO-CORDEX: new high-resolution climate change projections for European impact research. Reg Environ Chang 14:563–578.  https://doi.org/10.1007/s10113-013-0499-2 CrossRefGoogle Scholar
  15. Jones GV, Davis RE (2000) Climate influences on grapevine phenology, grape composition, and wine production and quality for Bordeaux, France. Am J Enol Vitic 51:249–261Google Scholar
  16. Kizildeniz T, Mekni I, Santesteban H, Pascual I, Morales F, Irigoyen JJ (2015) Effects of climate change including elevated CO2 concentration, temperature and water deficit on growth, water status, and yield quality of grapevine (Vitis vinifera L.) cultivars. Agric Water Manag 159:155–164.  https://doi.org/10.1016/j.agwat.2015.06.015 CrossRefGoogle Scholar
  17. Kliewer WM (1977) Influence of temperature, solar radiation and nitrogen on coloration and composition of emperor grapes. Am J Enol Vitic 28:96–103Google Scholar
  18. Knutti R, Sedláček J (2013) Robustness and uncertainties in the new CMIP5 climate model projections. Nat Clim Chang 3:369–373.  https://doi.org/10.1038/nclimate1716 CrossRefGoogle Scholar
  19. Koufos GC, Mavromatis T, Koundouras S, Jones GV (2017) Response of viticulture-related climatic indices and zoning to historical and future climate conditions in Greece. Int J Climatol 38:2097–2111.  https://doi.org/10.1002/joc.5320 CrossRefGoogle Scholar
  20. Lereboullet AL, Beltrando G, Bardsley DK, Rouvellac E (2014) The viticultural system and climate change: coping with long-term trends in temperature and rainfall in Roussillon, France. Reg Environ Chang 14:1951–1966.  https://doi.org/10.1007/s10113-013-0446-2 CrossRefGoogle Scholar
  21. Liu M, Rajagopalan K, Chung SH, Jiang X, Harrison J, Nergui T, Guenther A, Miller C, Reyes J, Tague C, Choate J, Salathé EP, Stöckle CO, Adam JC (2014) What is the importance of climate model bias when projecting the impacts of climate change on land surface processes? Biogeosciences 11:2601–2622.  https://doi.org/10.5194/bg-11-2601-2014 CrossRefGoogle Scholar
  22. Malheiro AC, Santos JA, Fraga H, Pinto JG (2010) Climate change scenarios applied to viticultural zoning in Europe. Clim Res 43:163–177.  https://doi.org/10.3354/cr00918 CrossRefGoogle Scholar
  23. Malheiro AC, Campos R, Fraga H, Eiras-Dias J, Silvestre J, Santos JA (2013) Winegrape phenology and temperature relationships in the Lisbon wine region, Portugal. J Int Sci Vigne Vin 47:287–299.  https://doi.org/10.20870/oeno-one.2013.47.4.1558 CrossRefGoogle Scholar
  24. Meier M, Fuhrer J, Holzkämper A (2018) Changing risk of spring frost damage in grapevines due to climate change? A case study in the Swiss Rhone Valley. Int J Biometeorol 62:991–1002.  https://doi.org/10.1007/s00484-018-1501-y CrossRefGoogle Scholar
  25. Moisselin JM, Dubuisson B (2006) Observed changes in climate extremes in France. Houille Blanche 6:42–47.  https://doi.org/10.1051/lhb:2006099 CrossRefGoogle Scholar
  26. Monjo R, Gaitán E, Pórtoles J, Ribalaygua J, Torres L (2016) Changes in extreme precipitation over Spain using statistical downscaling of CMIP5 projections. Int J Climatol 36:757–769.  https://doi.org/10.1002/joc.4380 CrossRefGoogle Scholar
  27. Mullins MG, Bouquet A, Williams LE (1992) Biology of the grapevine. Cambridge University Press, CambridgeGoogle Scholar
  28. Pollini L, Bucelli P, Calo A, Costantini E, Lisanti M, Lorenzetti R, Malorgio G, Moio L, Pomarici E, Storchi P, Tomasi D, Amatori E (2013) Atlante dei territori del vino italiano. Pacini Editore. In: PisaGoogle Scholar
  29. Ruml M, Vuković A, Vujadinović M, Djurdjević V, Ranković-Vasić Z, Atanacković Z, Sivčev B, Marković N, Matijašević S, Petrović N (2012) On the use of regional climate models: implications of climate change for viticulture in Serbia. Agric For Meteorol 158–159:53–62.  https://doi.org/10.1016/j.agrformet.2012.02.004 CrossRefGoogle Scholar
  30. Ruml M, Korać N, Vujadinović M, Vuković A, Ivanišević D (2016) Response of grapevine phenology to recent temperature change and variability in the wine-producing area of Sremski Karlovci, Serbia. J Agric Sci 154:186–206.  https://doi.org/10.1017/S0021859615000453 CrossRefGoogle Scholar
  31. Salazar-Parra C, Aguirreolea J, Sánchez-Díaz M, Irigoyen JJ, Morales F (2012) Photosynthetic response of Tempranillo grapevine to climate change scenarios. Ann Appl Biol 161:277–292.  https://doi.org/10.1111/j.1744-7348.2012.00572.x CrossRefGoogle Scholar
  32. Salazar-Parra C, Aranjuelo I, Pascual I, Erice G, Sanz-Sáez Á, Aguirreolea J, Sánchez-Díaz M, Irigoyen JJ, Araus JL, Morales F (2015) Carbon balance, partitioning and photosynthetic acclimation in fruit-bearing grapevine (Vitis vinifera L. cv. Tempranillo) grown under simulated climate change (elevated CO2, elevated temperature and moderate drought) scenarios in temperature gradient greenhouses. J Plant Physiol 174:97–109.  https://doi.org/10.1016/j.jplph.2014.10.009 CrossRefGoogle Scholar
  33. Santos JA, Costa R, Fraga H (2018) New insights into thermal growing conditions of Portuguese grapevine varieties under changing climates. Theor Appl Climatol.  https://doi.org/10.1007/s00704-018-2443-3
  34. Soares PMM, Lima DCA, Cardoso RM, Nascimento ML, Semedo A (2017) Western Iberian offshore wind resources: more or less in a global warming climate? Appl Energy 203:72–90.  https://doi.org/10.1016/j.apenergy.2017.06.004 CrossRefGoogle Scholar
  35. Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (2013) Summary for policymakers. In: Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge and New York.  https://doi.org/10.1017/CBO9781107415324.004
  36. Teslić N, Vujadinović M, Ruml M, Antolini G, Vuković A, Parpinello PG, Ricci A, Versari A (2017) Climatic shifts in high quality wine production areas, Emilia Romagna, Italy, 1961–2015. Clim Res 73:195–206.  https://doi.org/10.3354/cr01468 CrossRefGoogle Scholar
  37. Teslić N, Zinzani G, Parpinello PG, Versari A (2018) Climate change trends, grape production, and potential alcohol concentration in wine from the “Romagna Sangiovese” appellation area (Italy). Theor Appl Climatol 131:793–803.  https://doi.org/10.1007/s00704-016-2005-5 CrossRefGoogle Scholar
  38. Tomozeiu R, Cacciamani C, Pavan V, Morgillo A, Busuioc A (2007) Climate change scenarios for surface temperature in Emilia-Romagna (Italy) obtained using statistical downscaling models. Theor Appl Climatol 90:25–47.  https://doi.org/10.1007/s00704-006-0275-z CrossRefGoogle Scholar
  39. Tonietto J (1999) Les emacroclimats viticoles mondiaux et l’influence du mésoclimat sur la typicité de la Syrah et du Muscat de Hambourg dans le sur de la France: méthodologie de caráctérisation. Disertation, Ecole Nationale Supéricure AgronomiqueGoogle Scholar
  40. Tonietto J, Carbonneau A (2004) A multicriteria climatic classification system for grape-growing regions worldwide. Agric For Meteorol 124:81–97.  https://doi.org/10.1016/j.agrformet.2003.06.001 CrossRefGoogle Scholar
  41. van Leeuwen C, Schultz HR, De Cortazar-Atauri IG, Duchêne E, Ollat N, Pieri P, Bois B, Goutouly JP, Quénol H, Touzard JM, Malheiro AC, Bavaresco L, Delrot S (2013) Why climate change will not dramatically decrease viticultural suitability in main wine-producing areas by 2050. Proc Natl Acad Sci U S A 110:E3051–E3052.  https://doi.org/10.1073/pnas.1307927110 CrossRefGoogle Scholar
  42. Vaudour E (2002) The quality of grapes and wine in relation to geography: notions of terroir at various scales. J Wine Res 13:117–141.  https://doi.org/10.1080/0957126022000017981 CrossRefGoogle Scholar
  43. Vuković A, Vujadinović M, Rendulić S, Djurdjevic V, Ruml M, Babić V, Popović D (2018) Global warming impact on climate change in Serbia for the period 1961–2100. Therm Sci 22:1–14.  https://doi.org/10.2298/TSCI180411168V CrossRefGoogle Scholar
  44. Wilks DS (2006) Statistical methods in the atmospheric sciences. International geophysics series, vol 91, 2nd edn. Elsevier Academic Press Publications, LondonGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Nemanja Teslić
    • 1
    • 2
  • Mirjam Vujadinović
    • 3
    • 4
  • Mirjana Ruml
    • 3
  • Arianna Ricci
    • 1
  • Ana Vuković
    • 3
    • 4
  • Giuseppina P. Parpinello
    • 1
  • Andrea Versari
    • 1
  1. 1.Department of Agricultural and Food SciencesUniversity of BolognaCesenaItaly
  2. 2.Institute of Food TechnologyUniversity of Novi SadNovi SadSerbia
  3. 3.Faculty of AgricultureUniversity of BelgradeBelgradeSerbia
  4. 4.South East European Virtual Climate Change Center, RHMSSBelgradeSerbia

Personalised recommendations