Regional Environmental Change

, Volume 18, Issue 8, pp 2313–2327 | Cite as

Assessing the implications of a 1.5 °C temperature limit for the Jamaican agriculture sector

  • Kevon RhineyEmail author
  • Anton Eitzinger
  • Aidan D. Farrell
  • Steven D. Prager
Original Article


Despite recent calls to limit future increases in the global average temperature to well below 2 °C, little is known about how different climatic thresholds will impact human society. Future warming trends have significant global food security implications, particularly for small island developing states (SIDS) that are recognized as being among the most vulnerable to global climate change. In the case of the Caribbean, any significant change in the region’s climate is likely to have significant adverse effects on the agriculture sector. This paper explores the potential biophysical impacts of a + 1.5 °C warming scenario on several economically important crops grown in the Caribbean island of Jamaica. Also, it explores differences to a > 2.0 °C warming scenario, which is more likely, if the current policy agreements cannot be complied with by the international community. We use the ECOCROP niche model to estimate how predicted changes in future climate could affect the growing conditions of several commonly cultivated crops from both future scenarios. We then discuss some key policy considerations for Jamaica’s agriculture sector, specifically related to the challenges posed to future adaptation pathways amidst growing climate uncertainty and complexity. Our model results show that even an increase less than + 1.5 °C is expected to have an overall negative impact on crop suitability and a general reduction in the range of crops available to Jamaican farmers. This observation is instructive as increases above the + 1.5 °C threshold would likely lead to even more irreversible and potentially catastrophic changes to the sustainability of Jamaica’s agriculture sector. The paper concludes by outlining some key considerations for future action, paying keen attention to the policy relevance of a + 1.5 °C temperature limit. Given little room for optimism with respect to the imminent changes that SIDS will need to confront in the near future, broad-based policy engagement by stakeholders in these geographies is paramount, irrespective of the climate warming scenario.


Small island developing states Climate change Agriculture Adaptation Jamaica Caribbean 

Supplementary material

10113_2018_1409_MOESM1_ESM.docx (410 kb)
ESM 1 (DOCX 410 kb)


  1. Adger WN (2003) Social capital, collective action, and adaptation to climate change. Econ Geogr 79(4):387–404. CrossRefGoogle Scholar
  2. Adger WN, Agrawala S, Mirza M, Conde C, O'Brien K, Pulhin J, Pulwarty RS, Smit B, Takahashi K (2007) Assessment of adaptation practices, options, constraints and capacity. p. 717–743 in IPCC, editor. Climate change 2007: impacts, adaptation and vulnerability, Cambridge University Press, CambridgeGoogle Scholar
  3. Barker D (1993) Dualism and disasters on a typical island: constraints on agricultural development in Jamaica. Tijdschr Econ Soc Geogr 84(5):332–340. CrossRefGoogle Scholar
  4. Barker D (2012) Caribbean agriculture in a period of global change: vulnerabilities and opportunities. Caribb Stud 40(2):41–61. CrossRefGoogle Scholar
  5. Barker D, Beckford CL (2006) Plastic yam and plastic yam sticks: perspectives on indigenous technical knowledge among Jamaican farmers. Tijdschr Econ Soc Geogr 97(5):535–546. CrossRefGoogle Scholar
  6. Barnston AG, Li S, Mason SJ, DeWitt DG, Goddard L, Gong X (2010) Verification of the first 11 years of IRI’s seasonal climate forecasts. J Appl Meteorol Climatol 49(3):493–520. CrossRefGoogle Scholar
  7. Beckford C, Barker D (2007) The role and value of local knowledge in Jamaican agriculture: adaptation and change in small-scale farming. Geogr J 173(2):118–128. CrossRefGoogle Scholar
  8. Beckford C, Barker D, Bailey S (2007) Adaptation, innovation and domestic food production in Jamaica: Some examples of survival strategies of small-scale farmers. Singap J Trop Geogr 28(3):273–286CrossRefGoogle Scholar
  9. Beckford CL, Campbell DR (2013) Domestic food production and food security in the Caribbean: building capacity and strengthening local food production systems. Palgrave Macmillan, New York. CrossRefGoogle Scholar
  10. Beckford CL, Norman A (2016) Climate change and quality of planting materials for domestic food production: tissue culture and protected agriculture. In: Beckford CL, Rhiney K (eds) Globalization, agriculture and food in the Caribbean: climate change, gender and geography. Palgrave Macmillan, London, pp 189–216Google Scholar
  11. Beckford CL, Rhiney K (2016) Future of food and agriculture in the Caribbean in the context of climate change and globalization: where do we go from here? In: Beckford CL, Rhiney K (eds) Globalization, agriculture and food in the Caribbean: climate change, gender and geography. Palgrave Macmillan, London, pp 267–295Google Scholar
  12. Beebe SE, Ramirez J, Jarvis A, Rao I, Mosquera G, Bueno J, Blair M (2011) Genetic improvement of common beans and the challenges of climate change. In: Yadav SS, Redden RJ, Hatfield JL et al (eds) Crop adaptation to climate change. Wiley-Blackwell, Oxford, pp 356–369. CrossRefGoogle Scholar
  13. Campbell D, Beckford CL (2009) Negotiating uncertainty: Jamaican small farmers’ adaptation and coping strategies, before and after hurricanes—a case study of Hurricane Dean. Sustainability 1(4):1366–1387. CrossRefGoogle Scholar
  14. Campbell D, Barker D, McGregor DFM (2011a) Dealing with drought: small farmers and environmental hazards in southern St Elizabeth, Jamaica. Appl Geogr 13(1):1–16. CrossRefGoogle Scholar
  15. Campbell J, Taylor MA, Stephenson TS, Watson RA, White FS (2011b) Future climate of the Caribbean from a regional climate model. Int J Climatol 31(12):1866–1878. CrossRefGoogle Scholar
  16. Challinor AJ, Ewert F, Arnold S, Simelton E, Fraser E (2009) Crops and climate change: progress, trends, and challenges in simulating impacts and informing adaptation. J Exp Bot 60(10):2775–2789. CrossRefGoogle Scholar
  17. Chen AA, Taylor MA (2002) Investigating the link between early season Caribbean rainfall and the El Nino + 1 year. Int J Climatol 22:87–106. CrossRefGoogle Scholar
  18. Chen A, Taylor M, Stephenson T, Batchelor T (2009) Modelling needs for small islands based on Jamaican scenarios. Paper presented at Jamaica Institute of Environmental Professionals (JIEP) 4th Conference on the Environment: Climate Change-Caribbean Response. Kingston, JamaicaGoogle Scholar
  19. Church JA, White NJ, Coleman R, Lambeck K, Mitrovica JX (2004) Estimates of the regional distribution of sea-level rise over the 1950–2000 period. J Clim 17:2609–2625. CrossRefGoogle Scholar
  20. Constable A (2016) Observations, perceptions, and responses to climate change and variability among small farmers in Sherwood Content, Trelawny, Jamaica. In: Beckford CL, Rhiney K (eds) Globalization, agriculture and food in the Caribbean: climate change, gender and geography. Palgrave Macmillan, London, pp 217–242Google Scholar
  21. Curtis S, Gamble DW, Popke J (2014) Sensitivity of crop water need to 2071–95 projected temperature and precipitation changes in Jamaica. Earth Interact 18(12):1–17. CrossRefGoogle Scholar
  22. Delerce S, Dorado H, Grillon A, Rebolledo MC, Prager SD, Patiño VH, Varón GG, Jiménez D, Wang Z (2016) Assessing weather-yield relationships in rice at local scale using data mining approaches. PLOS ONE 11(8):e0161620CrossRefGoogle Scholar
  23. Dessai S, Hulme M (2004) Does climate adaptation policy need probabilities? Clim Pol 4:107–128. CrossRefGoogle Scholar
  24. Dessai S, Hulme M, Lempert R, Pielke R Jr (2009) Do we need better predictions to adapt to a changing climate? Eos Trans Am Geophys Union 90(13):111–112. CrossRefGoogle Scholar
  25. Eitzinger A, Laderach P, Gordon J, Benedikter A, Quiroga A, Pantoja A, Bruni M (2013) Crop suitability and climate change in Jamaica: impacts on farmers and the supply chain to the hotel industry. Caribb Geogr 18(1):20–38Google Scholar
  26. Eitzinger A, Farrell AD, Rhiney K, Carmona S, van Loosen I, Taylor M (2015a) Trinidad and Tobago: assessing the impact of climate change on cocoa and tomato, CIAT Policy Brief No. 27. Cali, Colombia, Centro Internacional de Agricultura Tropical (CIAT)Google Scholar
  27. Eitzinger A, Rhiney K, Farrell AD, Carmona S, van Loosen I, Taylor M (2015b) Jamaica: assessing the impact of climate change on cocoa and tomato, CIAT Policy Brief No. 28. Cali, Colombia, Centro Internacional de Agricultura Tropical (CIAT)Google Scholar
  28. FAO (2000) Ecocrop. Accessed 20 Jun 2018
  29. Farrell AD (2014) Plant response to high temperatures. In: Munns R, Schmidt S, Beveridge C (eds) Plants in action, 2nd edn. Australian Society of Plant Scientists, New Zealand Society of Plant Biologists, and New Zealand Institute of Agricultural and Horticultural Science, New ZealandGoogle Scholar
  30. Farrell AD, Rhiney K, Eitzinger A, Umaharan P (2018) Climate adaptation in a minor crop species: is the cocoa breeding network prepared for climate change? Agroecol Sust Food 42:1–22. CrossRefGoogle Scholar
  31. Feller U (2016) Drought stress and carbon assimilation in a warming climate: reversible and irreversible impacts. J Plant Physiol 203:84–94. CrossRefGoogle Scholar
  32. Feller U, Vaseva II (2014) Extreme climatic events: impacts of drought and high temperature on physiological processes in agronomically important plants. Front Environ Sci 2:1–17. CrossRefGoogle Scholar
  33. Fick SE, Hijmans RJ (2017) Worldclim 2: new 1-km spatial resolution climate surfaces for global land areas. Int J Climatol 37(12):4302–4315. CrossRefGoogle Scholar
  34. Food and Agriculture Organization (2010) Agricultural disaster risk management plan-Jamaica. FAO, RomeGoogle Scholar
  35. Friedl MA, Sulla-Menashe D, Tan B, Schneider A, Ramankutty N, Sibley A, Huang X (2010) MODIS collection 5 global land cover: algorithm refinements and characterization of new datasets. Remote Sens Environ 114:168–182. CrossRefGoogle Scholar
  36. Gamble DW (2009) Caribbean vulnerability: development of an appropriate climatic framework. In: DFM MG, Dodman D, Barker D (eds) Global change and Caribbean vulnerability: environment, economy and society at risk? The University of the West Indies Press, Kingston, pp 22–46Google Scholar
  37. Gamble DW, Curtis S (2008) Caribbean precipitation: review, model, and prospect. Prog Phys Geogr 23:265–276. CrossRefGoogle Scholar
  38. Gamble DW, Campbell D, Allen T, Barker D, Curtis S, McGregor D, Popke J (2010) Climate change, drought, and Jamaican agriculture: local knowledge and the climate record. Ann Assoc Am Geogr 100(4):880–893. CrossRefGoogle Scholar
  39. Glenn E, Comarazamy DJ, González JE, Smith T (2015) Detection of recent regional sea surface temperature warming in the Caribbean and surrounding region. Geophys Res Lett 42(16):6785–6792. CrossRefGoogle Scholar
  40. Gregory PJ, Ingram JSI, Brklacich M (2005) Climate change and food security. Philos Trans R Soc B Biol Sci 360(1463):2139–2148. CrossRefGoogle Scholar
  41. Guido Z, Finan T, Rhiney K, Roundtree V, Johnson E, McCook G (2017) The stresses and dynamics of smallholder coffee systems in Jamaica’s Blue Mountains: a case for the potential role of climate services. Clim Chang 147(1–2):253–266. CrossRefGoogle Scholar
  42. Hall TC, Sealy AM, Stephenson TS, Kuusunoki S, Taylor M, Chen A, Kitoh A (2013) Future climate of the Caribbean from a super-high resolution atmospheric general circulation model. Theor Appl Climatol 113:271–287. CrossRefGoogle Scholar
  43. Harrison S, Stainforth D (2009) Predicting climate change: lessons from reductionism, emergence and the past. Eos Trans Am Geophys Union 90(13):111–112. CrossRefGoogle Scholar
  44. Harvey CA, Chacón M, Donatti CI, Garen E, Hannah L, Andrade A, Bede L, Brown D, Chara J, Clement C, Wollenberg E, Gray E, Hoang MH, Minang P, Seeberg-Elverfeldt C, Semroc B, Shames S, Smukler S, Somarriba E, Torquebiau E, van Etten J (2014) Climate-smart landscapes: opportunities and challenges for integrating adaptation and mitigation in tropical agriculture. Conserv Lett 7(2):77–90. CrossRefGoogle Scholar
  45. Hijmans RJ, Graham CH (2006) The ability of climate envelope models to predict the effect of climate change on species distributions. Glob Chang Biol 12(12):2272–2281CrossRefGoogle Scholar
  46. Hijmans RJ, Guarino L, Cruz M, Rojas E (2001) Computer tools for spatial analysis of plant genetic resources data. 1. DIVA-GIS. Plant Genet Resour Newsl 127:15–19Google Scholar
  47. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25(15):1965–1978. CrossRefGoogle Scholar
  48. Holdschlag A, Ratter BMW (2016) Caribbean island states in a social-ecological panarchy? Complexity theory, adaptability and environmental knowledge systems. Anthropocene 13:80–93. CrossRefGoogle Scholar
  49. IPCC (2013) Summary for policymakers. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  50. Janssen MA, Schoon ML, Ke W, Börner K (2006) Scholarly networks on resilience, vulnerability and adaptation within the human dimensions of global environmental change. Glob Environ Chang 16(3):240–252CrossRefGoogle Scholar
  51. Jarvis A, Ramirez-Villegas J, Campo BVH, Navarro-Racines C (2012) Is cassava the answer to African climate change adaptation? Trop Plant Biol 5(1):9–29. CrossRefGoogle Scholar
  52. Jones PG, Thornton PK (2003) The potential impacts of climate change on maize production in Africa and Latin America in 2055. Glob Environ Chang 13(1):51–59. CrossRefGoogle Scholar
  53. Karmalkar AV, Bradley RS, Diaz HF (2011) Climate change in Central America and Mexico: regional climate model validation and climate change projections. Clim Dyn 37:605–629. CrossRefGoogle Scholar
  54. Karmalkar AV, Campbell J, Stephenson TS, New MG (2013) A review of observed and projected changes in climate for the islands in the Caribbean. Atmosfera 26(2):283–309. CrossRefGoogle Scholar
  55. Kelman I (2014) No change from climate change: vulnerability and small island developing states. Geogr J 180(2):120–129. CrossRefGoogle Scholar
  56. Khoury CK, Castaneda-Alvarez NP, Achicanoy HA, Sosa CC, Bernau V, Kassa MT, Norton SL, van der Maesen LJG, Upadhyaya HD, Ramirez-Villegas J, Jarvis A, Struik PC (2015) Crop wild relatives of pigeonpea [Cajunus cajan (L.) Millsp.]: distributions, ex situ conservation status, and potential genetic resources for abiotic stress tolerance. Biol Conserv 184(2015): 259–270. CrossRefGoogle Scholar
  57. Knudson C (2016) The insurance trap: banana farming in Dominica after Hurricane Hugo. In: Barker D, McGregor D, Rhiney K, Edwards T (eds) Global change and the Caribbean: adaptation and resilience. The University of the West Indies Press, Kingston, pp 53–66Google Scholar
  58. Lobell DB, Schlenker W, Costa-Roberts J (2011) Climate trends and global crop production since 1980. Science 333:616–620. CrossRefGoogle Scholar
  59. Long SP, Ort DR (2010) More than taking the heat: crops and global change. Curr Opin Plant Biol 13(3):240–247CrossRefGoogle Scholar
  60. Mace MJ, Verheyen R (2016) Loss, damage and responsibility after COP21: all options open for the Paris Agreement. Review of European, Comparative and International Environmental Law 25(2):197–214. CrossRefGoogle Scholar
  61. Mcgregor DFM, Barker D, Campbell D (2009) Environmental change and Caribeban food security: recent hazard impacts and domestic food production in Jamaica. In: DFM MG, Dodman D, Barker D (eds) Global change and Caribbean vulnerability: environment, economy and society at risk? The University of the West Indies Press, Kingston, Jamaica, pp 197–217Google Scholar
  62. Mighty M (2016) The Jamaican coffee industry: challenges and responses to increased global competition. In: Beckford LC, Rhiney K (eds) Globalization, agriculture and food in the Caribbean: climate change, gender and geography. Palgrave Macmillan, London, pp 129–153. CrossRefGoogle Scholar
  63. Mimura N, Nurse L, McLean RF, Agard J, Briguglio L, Lefale P, Payet R, Sem G (2007) Small islands. In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) Climate change 2007: impacts, adaptation and vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the IPCC. Cambridge University Press, Cambridge, UK, pp 687–716Google Scholar
  64. Mintz S (1985) From plantations to peasantries in the Caribbean: Caribbean contours. John Hopkins University Press, Baltimore, MDGoogle Scholar
  65. Moulton AA, Popke J (2016) Greenhouse governmentality: protected agriculture and the changing biopolitical management of agrarian life in Jamaica. Environment and Planning D: Society and Space 35(4):714–732. CrossRefGoogle Scholar
  66. Moulton AA, Popke J, Curtis S, Gamble DW, Poore S (2015) Water management strategies and climate adaptation: lessons learned from the 2014 drought in Jamaica. Caribb Geogr 20:60–73Google Scholar
  67. Müller C (2013) African lessons on climate change risks for agriculture. Annu Rev Nutr 33(1):395–411CrossRefGoogle Scholar
  68. Nankishore A, Farrell AD (2016) The response of contrasting tomato genotypes to combined heat and drought stress. J Plant Physiol 202:75–82. CrossRefGoogle Scholar
  69. Nelson M, Zak K, Davine T, Pau S (2016) Climate change and food systems research: current trends and future directions. Geography Compass 10(10):414–428. CrossRefGoogle Scholar
  70. Nkemdirim LC (1979) Spatial and seasonal distribution of rainfall and runoff in Jamaica. Geogr Rev 69(3):288–301. CrossRefGoogle Scholar
  71. Nurse LA, McLean RF, Agard J, Briguglio LP, Duvat-Magnan V, Pelesikoti N, Tompkins E, Webb A (2014) Small islands. In: Barros VR, Field CB, Dokken DJ, Mastrandrea MD, Mach KJ, Bilir TE, Chatterjee M, Ebi KL, Estrada YO, Genova RC, Girma B, Kissel ES, Levy AN, MacCracken S, Mastrandrea PR, White LL (eds.) Climate Change 2014: impacts, adaptation, and vulnerability. Part B: regional aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 1613–1654Google Scholar
  72. Ostrom E (2009) A general framework for analyzing sustainability of social-ecological systems. Science 325(5939):419–422. CrossRefGoogle Scholar
  73. Ovalle-Rivera O, Laderach P, Brunn C, Obersteiner M, Schroth G (2015) Projected shifts in Coffea arabica suitability among major global producing regions due to climate change. PLoS One 10(4):e0124155. CrossRefGoogle Scholar
  74. Palanisamy H, Becker M, Meyssignac B, Henry O, Cazenave A (2012) Regional sea level change and variability in the Caribbean Sea since 1950. Journal of Geodetic Science 2(2):125–133. CrossRefGoogle Scholar
  75. Poore S, Moulton AA, Gamble DW, Curtis S, Popke J (2016) The 2014 Jamaican drought: climate change or interannual climate variability? In: Barker D, McGregor D, Rhiney K, Edwards T (eds) Global change and the Caribbean: adaptation and resilience. The University of the West Indies Press, Kingston, Jamaica, pp 43–51Google Scholar
  76. Popke J, Curtis S, Gamble DW (2015) A social justice framing of climate change discourse and policy: adaptation, resilience and vulnerability in a Jamaican agricultural landscape. Geoforum 73(1):70–80. CrossRefGoogle Scholar
  77. Porter JR, Xie L, Challinor AJ, Cochrane K, Howden SM, Iqbal MM, Lobell DB, Travasso MI (2014) Food security and food production systems. In: Barros VR, Field CB, Dokken DJ, Mastrandrea MD, Mach KJ, Bilir TE, Chatterjee M, Ebi KL, Estrada YO, Genova RC, Girma B, Kissel ES, Levy AN, MacCracken S, Mastrandrea PR, White LL (eds.) Climate change 2014: impacts, adaptation, and vulnerability. Part A: global and sectoral aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 485–533Google Scholar
  78. Powlson DS, Gregory PJ, Whalley WR, Quinton JN, Hopkins DW, Whitmore AP, Hirsch PR, Goulding KWT (2011) Soil management in relation to sustainable agriculture and ecosystem services. Food Policy 36(1):S72–S87. CrossRefGoogle Scholar
  79. Pulwarty RS, Nurse LA, Trotz UO (2010) Caribbean islands in a changing climate. Environment 52(6):16–27Google Scholar
  80. Ramirez-Villegas J, Jarvis A, Laderach P (2013a) Empirical approaches for assessing impacts of climate change on agriculture: the EcoCrop model and a case study with grain sorghum. Agriculture and Forest Meteorology 170:67–78. CrossRefGoogle Scholar
  81. Ramirez-Villegas J, Challinor AJ, Thornton PK, Jarvis A (2013) Implications of regional improvement in global climate models for agricultural impact research. Environ Res Lett 8(2):024018CrossRefGoogle Scholar
  82. Rankine DR, Cohen JE, Taylor MA, Coy AD, Simpson LA, Stephenson T, Lawrence JL (2015) Parameterizing the FAO AquaCrop model for rainfed and irrigated field-grown sweet potato. Agron J 107:375–387. CrossRefGoogle Scholar
  83. Rauscher SA, Giorgi F, Diffenbaugh NS, Seth A (2008) Extension and intensification of the Meso-American mid-summer drought in the twenty-first century. Clim Dyn 31:551–571. CrossRefGoogle Scholar
  84. Reynolds M, Manes Y, Rebetzke G (2012) In: Reynolds M, Pask A, Mullan D (eds) Application of physiology in breeding for heat and drought stress. Physiological breeding. I: Interdisciplinary approaches to improve crop adaptation. CIMMYT, MexicoGoogle Scholar
  85. Rhiney K (2009) Forging new linkages in a changing global economy? The case of cooperatives and their link with the Negril tourism industry, Jamaica. Caribbean Geography 15(2):142–159Google Scholar
  86. Rhiney K (2015) Geographies of vulnerability in a changing climate: lessons from the Caribbean. Geography Compass 9(3):97–114. CrossRefGoogle Scholar
  87. Rhiney K, Campbell D, Barker D (2016) Geographies of vulnerability and resilience of rural farming communities in Jamaica to climate variability and change: a comparative analysis. In: Barker D, McGregor D, Rhiney K, Edwards T (eds.) Global change and the Caribbean: adaptation and resilience. Kingston, Jamaica: The University of the West Indies Press, pp. 89–114Google Scholar
  88. Rhiney K, Eitzinger A, Farrell AD, Taylor MA (2017) Assessing the vulnerability of Caribbean farmers to climate change impacts: a comparative study of cocoa farmers in Jamaica and Trinidad. In: Thomas-Hope E (ed) Climate change and food security: Africa and the Caribbean. Routledge, London and New York, pp 59–69. CrossRefGoogle Scholar
  89. Riahi K, Rao S, Krey V, Cho C, Chirkov V, Fischer G, Kindermann G, Nakicenovic N, Rafaj P (2011) RCP 8.5—a scenario of comparatively high greenhouse gas emissions. Clim Chang 109(1–2):33–57. CrossRefGoogle Scholar
  90. Richards J, Madramootoo CA, Goyal MK, Trotman A (2013) Application of the standardized precipitation index and normalized difference vegetation index for evaluation of irrigation demands at three sites in Jamaica. J Irrig Drain Eng 139(11):922–932. CrossRefGoogle Scholar
  91. Rippke U, Ramirez-Villegas J, Jarvis A, Vermeulen SJ, Parker L, Mer F, Diekkrüger B, Challinor AJ, Howden M (2016) Timescales of transformational climate change adaptation in sub-Saharan African agriculture. Nat Clim Chang 6(6):605–609CrossRefGoogle Scholar
  92. Robinson S (2017) Climate change adaptation trends in small island developing states. Mitigation & Adaptation Strategies for Global Change 22(4):669–691. CrossRefGoogle Scholar
  93. Rosenzweig C, Elliott J, Deryng D, Ruane AC, Müller C, Arneth A, Boote KJ, Folberth C, Glotter M, Khabarov N, Neumann K, Piontek F, Pugh TAM, Schmid E, Stehfest E, Yang H, Jones JW (2014) Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proc Natl Acad Sci 111(9):3268–3273CrossRefGoogle Scholar
  94. Schaeffer M, Rogelj J, Roming N, Sferra F, Hare B, Serdeczny O (2015) Feasability of limiting warming to 1.5 and 2 °C. Climate Analytics, 20. Retrieved from 1o5c_2c.pdf
  95. Schafleitner R, Ramirez J, Jarvis A, Evers D, Gutierrez R, Scurrah M (2011) Adaptation of the potato crop to changing climates. In: Yadav S, Redden RJ, Hatfield J et al (eds) Crop adaptation to climate change. Wiley- Blackwell, Oxford, pp 287–297. CrossRefGoogle Scholar
  96. Schleussner C-F, Lissner TK, Fischer EM, Wohland J, Perrette M, Golly A, Rogelj J, Childers K, Schewe J, Frieler K, Mengel M, Schaeffer M (2016) Differential climate impacts for policy-relevant limits to global warming: the case of 1.5 °C and 2 °C. Earth System Dynamics 7(2):327–351. CrossRefGoogle Scholar
  97. Siebers MH, Slattery RA, Yendrek CR, Locke AM, Drag D, Ainsworth EA, Bernacchi CJ, Ort DR (2017) Simulated heat waves during maize reproductive stages alter reproductive growth but have no lasting effect when applied heat waves during maize reproductive stages alter reproductive growth but have no lasting effect when applied during vegetative stages. Agric Ecosyst Environ 240:162–170CrossRefGoogle Scholar
  98. Serju C (2010) Challenges force underperformance. Jamaica Gleaner, Sunday (August 1) Available at:
  99. Smith R, Rhiney K (2015) Climate change, vulnerability, land and livelihoods: the case of the Black Caribs in northeastern St. Vincent. Geoforum 73(1):22–31. CrossRefGoogle Scholar
  100. Stephenson TS, Goodess CM, Haylock MR, Chen AA, Taylor MA (2008) Detecting inhomogeneities in Caribbean and adjacent Caribbean temperature data using sea-surface temperatures. J Geophys Res 113:D21116. CrossRefGoogle Scholar
  101. Stephenson TS, Vincent LA, Allen T, Van Meerbeeck CJ, McLean N, Peterson TC, Taylor MA, Aaron-Morrison AP, Auguste T, Bernard D, Boekhoudt JRI, Blenman RC, Braithwaite GC, Brown G, Butler M, Cumberbatch CJM, Etienne-Leblanc S, Lake DE, Martin DE, McDonald JL, Zaruela MO, Porter AO, Ramirez MS, Tamar GA, Roberts BA, Mitro SS, Shaw A, Spence JM, Winter A, Trotman AR, (2014) Changes in extreme temperature and precipitation in the Caribbean region, 1961-2010. Int J ClimatolGoogle Scholar
  102. Taylor MA, Centello-Artola A, Charlery J, Forrajero I, Bezanilla A, Campbell A, Rivero R, Stephenson TS, Whyte E, Watson R (2007) Glimpses of the future: a briefing from the PRECIS Caribbean Climate Change Project, Caribbean Community Climate Change Centre, Belmopan, Belize. [online] URL; Retrieved 13th March, 2017
  103. Taylor MA, Stephenson TS, Chen AA, Stephenson KA (2012) Climate change and the Caribbean: review and response. Caribb Stud 40(2):169–200. CrossRefGoogle Scholar
  104. Taylor MA, White FS, Stephenson TS, Campbell JD (2013) Why dry? Investigating the future evolution of the Caribbean low level jet to explain projected Caribbean drying. Int J Climatol 33:784–792. CrossRefGoogle Scholar
  105. Taylor MA, Clarke LA, Centella A, Bezanilla A, Stephenson TS, Jones JJ, Campbell JD, Vichot A, Charlery J (2018) Future Caribbean climates in a world of rising temperatures: the 1.5 vs. 2.0 dilemma. J Clim 31(7):2907–2926. CrossRefGoogle Scholar
  106. Thompson N (2015) Shortage of extension officers crippling farmers. Jamaica Gleaner, Tuesday, November 17. Available at:
  107. Timms BF (2008) Development theory and domestic agriculture in the Caribbean: recurring crises and missed opportunities. Caribb Geogr 15(2):101–117Google Scholar
  108. Tomlinson J, Rhiney K (2018) Assessing the role of farmer field schools in promoting pro-adaptive behavior and attitude toward climate change in Jamaica. J Environ Stud Sci 8(1):86–98. CrossRefGoogle Scholar
  109. Trotz U, Lindo S (2013) Vulnerability and resilience building in CARICOM countries. Small Island Digest 2(1):25–39Google Scholar
  110. UNFCCC (2015) Report of the structured expert dialogue on the 2013–2015 review (UN Doc. FCCC/SB/2015/INF.1, 4 May 2015Google Scholar
  111. Van Vuuren DP, Stehfest E, den Elzen MG, Kram T, van Vliet J, Deetman S, Isaac M, Goldewijk KK, Hof A, Beltran AM, Oostenrijk R, van Ruijven B (2011) RCP2. 6: exploring the possibility to keep global mean temperature increase below 2 °C. Clim Chang 109(1–2):95–116. CrossRefGoogle Scholar
  112. Weeks J (ed) (2016) Structural adjustment and the agricultural sector in Latin America and the Caribbean. Springer, LondonGoogle Scholar
  113. Weis T (2004) Restructuring and redundancy: the impact and illogic of neoliberal agricultural reforms in Jamaica. J Agrar Chang 4(4):461–491. CrossRefGoogle Scholar
  114. Wells J (2013) Complexity and sustainability. Routledge, London and New YorkGoogle Scholar
  115. Wheeler T, von Braun J (2013) Climate change impacts on global food security. Science 341(6145):508–513. CrossRefGoogle Scholar
  116. Wolkovich EM, Cleland EE (2014) Phenological niches and the future of invaded ecosystems with climate change. AoB PLANTS 6.
  117. Zandalinas SI, Balfagon D, Arbona V, Gomez-Cadenas A (2017) Modulation of antioxidant defense system is associated with combined drought and heat stress tolerance in citrus. Front Plant Sci 8.
  118. Zhou R, Yu X, Ottosen C-O, Rosenqvist E, Zhao L, Wang Y, Yu W, Zhao T, Wu Z (2017) Drought stress had a predominant effect over heat stress on three tomato cultivars subjected to combined stress. BMC Plant Biol 17(1):24CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of GeographyRutgers UniversityPiscatawayUSA
  2. 2.International Center for Tropical AgricultureValle del CaucaColombia
  3. 3.Department of Life SciencesUniversity of the West IndiesTrinidadJamaica

Personalised recommendations