Advertisement

Effect of the landscape matrix condition for prioritizing multispecies connectivity conservation in a highly biodiverse landscape of Central Mexico

  • Camilo A. Correa Ayram
  • Manuel E. Mendoza
  • Andrés Etter
  • Diego R. Pérez-Salicrup
Original Article

Abstract

Implementing and monitoring long-term conservation strategies demands identifying priorities for preserving landscape connectivity. In this manuscript, we present an approach to prioritize areas for preserving landscape connectivity by using the landscape matrix in central-western Mexico and the connectivity for habitat patches considering ensembles of different terrestrial organisms. We aggregated three multispecies connectivity scenarios into a composite corridor scenario. To evaluate which corridors were more important to multispecies connectivity, we used the composite corridor model based on two ways: (1) the contribution of habitat patches that the corridor connects to overall connectivity and (2) the corridor’s capability for facilitating movement across the network of patches. Habitat patches were classified according to their value for the conservation of multispecies connectivity by hybridizing circuit-based and spatial prioritization models for connectivity conservation. We developed current flow models for each species (n = 40) and combined them in four prioritization models corresponding to the three multispecies groups and an all-species group. We found that the corridors having the highest accumulated importance (CI ≥ 58) are located along the protected areas of Pico de Tancítaro and the Monarch Butterfly Biosphere Reserve (Reserva de la Biosfera de la Mariposa Monarca–RBMM, Spanish acronym), which have relatively similar spatial distributions corridors compared to areas with priority for conservation (relative rank test = 0.6). Within those areas, there are permeable sectors with high connectivity retention values that could optimize their ecological function as multispecies corridors. Our approach is applicable to different landscapes, and it allows for identifying priorities for connectivity conservation by integrating landscape elements outside habitat patches.

Keywords

Spatial conservation planning Landscape connectivity Multispecies Corridors Mexico 

Notes

Acknowledgements

The authors acknowledge CONACyT and DGAPA-PAPIIT-UNAM for financing this research through the projects 179386 and IN107016, respectivaly. The first author thanks CONACyT for granting him a scholarship to obtain a PhD degree in Geography in UNAM. We also want to thank Dr. Sergio Zárate and Mary Ann Hall for his support in revising the English version of the manuscript. We also want to thank the valuable corrections and suggestions by Dr. Granger and two anonymous reviewers, which substantially improved the quality of the manuscript. M.E.M. and D.R.P.S. also acknowledge sabbatical Grants from PASPA-UNAM.

Supplementary material

10113_2018_1393_MOESM1_ESM.docx (15 kb)
Appendix 1 Basic metric information of the land use land cover matrix. (DOCX 15 kb)
10113_2018_1393_MOESM2_ESM.docx (42 kb)
Appendix 2 Multi-species groups and information about home ranges and dispersal distances used to evaluate the human footprint on habitat connectivity. (DOCX 41 kb)
10113_2018_1393_MOESM3_ESM.docx (24 kb)
Appendix 3 Main characteristics and description of the indexes used during the prioritization evaluation. (DOCX 23 kb)
10113_2018_1393_MOESM4_ESM.jpg (183 kb)
Appendix 4 Results of the pairwise comparison of connectivity conservation priority scenarios (see Fig. 7). Solid circles indicate the degree of spatial overlap of each pair of scenarios determined by the relative rank test of Warren (Warren and Seifert 2011) and solid triangles show the results of the Pearson correlation test. (JPG 182 kb)
10113_2018_1393_MOESM5_ESM.jpg (8.9 mb)
Appendix 5 Most important corridors of the study area. (JPG 9118 kb)
10113_2018_1393_MOESM6_ESM.docx (14 kb)
Appendix 6 Metric information about the 10 most important corridors of the study area. (DOCX 13 kb)

References

  1. Adriaensen F, Chardon JP, De Blust G, Swinnen E, Villalba S, Gulinck H, Matthysen E (2003) The application of ‘least-cost’ modelling as a functional landscape model. Landsc Urban Plan 64(4):233–247.  https://doi.org/10.1016/S0169-2046(02)00242-6 CrossRefGoogle Scholar
  2. Alagador D, Triviño M, Cerdeira J, Brás R, Cabeza M, Araújo M (2012) Linking like with like: optimising connectivity between environmentally-similar habitats. Landsc Ecol 27(2):291–301.  https://doi.org/10.1007/s10980-012-9704-9 CrossRefGoogle Scholar
  3. Atwood TC, Young JK, Beckmann JP, Breck SW, Fike J, Rhodes OE Jr, Bristow KD (2011) Modeling connectivity of black bears in a desert sky island archipelago. Biol Conserv 144(12):2851–2862.  https://doi.org/10.1016/j.biocon.2011.08.002 CrossRefGoogle Scholar
  4. Baldwin R, Perkl R, Trombulak S, Burwell W III (2010) Modeling ecoregional connectivity. In: Trombulak SC, Baldwin RF (eds) Landscape-scale conservation planning. Springer, Netherlands, pp 349–367CrossRefGoogle Scholar
  5. Beier P (1993) Determining minimum habitat areas and habitat corridors for cougars. Conserv Biol 7(1):94–108.  https://doi.org/10.1046/j.1523-1739.1993.07010094.x CrossRefGoogle Scholar
  6. Beier P, Majka DR, Newell SL (2009) Uncertainty analysis of least-cost modeling for designing wildlife linkages. Ecol Appl 19(8):2067–2077.  https://doi.org/10.1890/08-1898.1 CrossRefGoogle Scholar
  7. Belote RT, Dietz MS, McRae BH, Theobald DM, McClure ML, Irwin GH, McKinley PS, Gage JA, Aplet GH (2016) Identifying corridors among large protected areas in the United States. PLoS One 11(4):e0154223.  https://doi.org/10.1371/journal.pone.0154223 CrossRefGoogle Scholar
  8. Bezaury-Creel J, Torres JF, Ochoa-Ochoa LM, Castro-Campos M, Moreno N (2009) (Geodatabase of Muncipal Natural Protected Areas of Mexico - Version 2.0), Base de Datos Geográfica de Áreas Naturales Protegidas Municipales de México - Versión 2.0, Julio 31, 2009. The Nature Conservancy / Comisión Nacional para el Conocimiento y Uso de la Biodiversidad / Comisión Nacional de Áreas Naturales ProtegidasGoogle Scholar
  9. Bocco G, Mendoza ME, Masera O (2001) La dinámica del cambio de uso de suelo en Michocán. Una propuesta metodológica para el estudio de los procesos de deforestación. Investig Geogr 44:18e38Google Scholar
  10. Bowman J, Jaeger JAG, Fahrig L (2002) Dispersal distance of mammals is proportional to home range size. Ecology 83:2049–2055CrossRefGoogle Scholar
  11. Brás R, Cerdeira JO, Alagador D, Araújo MB (2013) Linking habitats for multiple species. Environ Model Softw 40:336–339.  https://doi.org/10.1016/j.envsoft.2012.08.001 CrossRefGoogle Scholar
  12. Breckheimer I (2012) Mapping habitat quality in conservation’s neglected geography. M.S. thesis, curriculum for the environment and ecology, University of North Carolina at Chapel HillGoogle Scholar
  13. Breckheimer I, Milt A (2012) Connect: landscape connectivity modeling toolbox. Department of Geography, University of North Carolina. Available: Accessed 22 Apr 2016Google Scholar
  14. Breckheimer IAN, Haddad NM, Morris WF, Trainor AM, Fields WR, Jobe RT, Hudgens BR, Moody A, Walters JR (2014) Defining and evaluating the umbrella species concept for conserving and restoring landscape connectivity. Conserv Biol 28(6):1584–1593.  https://doi.org/10.1111/cobi.12362 CrossRefGoogle Scholar
  15. Brodie JF, Giordano AJ, Dickson B, Hebblewhite M, Bernard H, Mohd-Azlan J, Anderson J, Ambu L (2015) Evaluating multispecies landscape connectivity in a threatened tropical mammal community. Conserv Biol 29(1):122–132.  https://doi.org/10.1111/cobi.12337 CrossRefGoogle Scholar
  16. Brodie JF, Mohd-Azlan J, Schnell JK (2016) How individual links affect network stability in a large-scale, heterogeneous metacommunity. Ecology 97:1658–1667.  https://doi.org/10.1890/15-1613.1 CrossRefGoogle Scholar
  17. Bunn AG, Urban DL, Keitt TH (2000) Landscape connectivity: a conservation application of graph theory. J Environ Manag 59(4):265–278.  https://doi.org/10.1006/jema.2000.0373 CrossRefGoogle Scholar
  18. Carranza ML, D’Alessandro E, Saura S, Loy A (2011) Connectivity providers for semi-aquatic vertebrates: the case of the endangered otter in Italy. Landscape Ecol 27(2):281–290.  https://doi.org/10.1007/s10980-011-9682-3
  19. Carroll C, Dunk JR, Moilanen A (2010) Optimizing resiliency of reserve networks to climate change: multispecies conservation planning in the Pacific Northwest, USA. Glob Chang Biol 16(3):891–904.  https://doi.org/10.1111/j.1365-2486.2009.01965.x CrossRefGoogle Scholar
  20. Carroll C, McRae BH, Brookes A (2012) Use of linkage mapping and centrality analysis across habitat gradients to conserve connectivity of gray wolf populations in western North America. Conserv Biol 26(1):78–87.  https://doi.org/10.1111/j.1523-1739.2011.01753.x CrossRefGoogle Scholar
  21. Correa Ayram CA, Mendoza ME, Pérez Salicrup DR, López Granados E (2014) Identifying potential conservation areas in the Cuitzeo Lake basin, Mexico by multitemporal analysis of landscape connectivity. J Nat Conserv 22(5):424–435.  https://doi.org/10.1016/j.jnc.2014.03.010 CrossRefGoogle Scholar
  22. Correa Ayram CA, Mendoza ME, Etter A, Salicrup DRP (2016) Habitat connectivity in biodiversity conservation: a review of recent studies and applications. Prog Phys Geogr 40(1):7–37.  https://doi.org/10.1177/0309133315598713 CrossRefGoogle Scholar
  23. Correa Ayram CA, Mendoza ME, Pérez Salicrup DR, López Granados E (2017) Evaluation of anthropogenic impact on habitat connectivity through a multidimensional spatial human footprint index in a highly biodiverse landscape of Central Mexico. Ecol IndicGoogle Scholar
  24. Creech TG, Epps CW, Monello RJ, Wehausen JD (2014) Using network theory to prioritize management in a desert bighorn sheep metapopulation. Landsc Ecol 29(4):605–619.  https://doi.org/10.1007/s10980-014-0016-0 CrossRefGoogle Scholar
  25. Cushman SA, Landguth EL (2012) Multi-taxa population connectivity in the Northern Rocky Mountains. Ecol Model 231:101–112.  https://doi.org/10.1016/j.ecolmodel.2012.02.011 CrossRefGoogle Scholar
  26. Cushman S, Landguth E, Flather C (2013) Evaluating population connectivity for species of conservation concern in the American Great Plains. Biodivers Conserv 22(11):2583–2605.  https://doi.org/10.1007/s10531-013-0541-1
  27. Dickson BG, Roemer GW, McRae BH, Rundall JM (2013) Models of regional habitat quality and connectivity for pumas (Puma concolor) in the Southwestern United States. PLOS ONE 8(12):e81898.  https://doi.org/10.1371/journal.pone.0081898
  28. Early R, Thomas CD (2007) Multispecies conservation planning: identifying landscapes for the conservation of viable populations using local and continental species priorities. J Appl Ecol 44(2):253–262.  https://doi.org/10.1111/j.1365-2664.2006.01268.x CrossRefGoogle Scholar
  29. Escalante T, Rodríguez G, Gámez N, León-Paniagua L, Barrera O, & Sánchez-Cordero V (2007) Biogeografía y conservación de los mamíferos. In Biodiversidad de la Faja Volcánica Transmexicana, I. Luna, J. J. Morrone y D. Espinosa (eds.). Universidad Nacional Autónoma de México, México p. 485–502Google Scholar
  30. Etter A, McAlpine CA, Seabrook L, Wilson KA (2011) Incorporating temporality and biophysical vulnerability to quantify the human spatial footprint on ecosystems. Biol Conserv 144(5):1585–1594.  https://doi.org/10.1016/j.biocon.2011.02.004
  31. Favreau JM, Drew CA, Hess GR, Rubino MJ, Koch FH, Eschelbach KA (2006) Recommendations for assessing the effectiveness of surrogate species approaches. Biodivers Conserv 15(12):3949–3969.  https://doi.org/10.1007/s10531-005-2631-1 CrossRefGoogle Scholar
  32. Flores-Villela O, Canseco-Márquez L ( 2007) Riqueza de la herpetofauna. In Biodiversidad de la Faja Volcánica Transmexicana, Luna-Vega I, Morrone JJ, Espinosa D (eds) Comisión Nacional para el Conocimiento y Uso de la Biodiversidad/ Universidad Nacional Autónoma de México. p 407-420Google Scholar
  33. Franco AMA, Anderson BJ, Roy DB, Gillings S, Fox R, Moilanen A, Thomas CD (2009) Surrogacy and persistence in reserve selection: landscape prioritization for multiple taxa in Britain. J Appl Ecol 46(1):82–91.  https://doi.org/10.1111/j.1365-2664.2008.01598.x CrossRefGoogle Scholar
  34. Frías-Alvarez P, Zúñiga-Vega JJ, Flores-Villela O (2010) A general assessment of the conservation status and decline trends of Mexican amphibians. Biodivers Conserv 19(13):3699–3742.  https://doi.org/10.1007/s10531-010-9923-9
  35. Fuller T, Munguía M, Mayfield M, Sánchez-Cordero V, Sarkar S (2006) Incorporating connectivity into conservation planning: a multi-criteria case study from Central Mexico. Biol Conserv 133(2):131–142.  https://doi.org/10.1016/j.biocon.2006.04.040 CrossRefGoogle Scholar
  36. Gámez N, Escalante T, Rodríguez G, Linaje M, Morrone JJ (2012) Caracterización biogeográfica de la Faja Volcánica Transmexicana y análisis de los patrones de distribución de su mastofauna. Rev Mex Biodiversidad 83:258–272Google Scholar
  37. Garden JG, O’Donnell T, Catterall CP (2015) Changing habitat areas and static reserves: challenges to species protection under climate change. Landsc Ecol 30(10):1959–1973.  https://doi.org/10.1007/s10980-015-0223-3 CrossRefGoogle Scholar
  38. Haddad NM, Brudvig LA, Clobert J, Davies KF, Gonzalez A, Holt RD, Lovejoy TE, Sexton JO, Austin MP, Collins CD, Cook WM, Damschen EI, Ewers RM, Foster BL, Jenkins CN, King AJ, Laurance WF, Levey DJ, Margules CR, Melbourne BA, Nicholls AO, Orrock JL, Song D-X, Townshend JR (2015) Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci Adv 1(2):e1500052.  https://doi.org/10.1126/sciadv.1500052 CrossRefGoogle Scholar
  39. INEGI (Instituto Nacional de Estadística, Geografía e Informática) (2010) XIII Censo General de Población y Vivienda, México. Ciudad de Aguascalientes, México, p 987Google Scholar
  40. INEGI (Instituto Nacional de Estadística, Geografía e Informática) (2013) (Vector dataset of land use and vegetation, scale 1: 250 000, series V). Conjunto de datos vectoriales de uso de suelo y vegetación, escala 1 : 250 000, serie V (continuo nacional). Instituto Nacional de Estadística, Geografía e Informática, AguascalientesGoogle Scholar
  41. Koen EL, Bowman J, Sadowski C, Walpole AA, Tatem A (2014) Landscape connectivity for wildlife: development and validation of multispecies linkage maps. Methods Ecol Evol 5(7):626–633.  https://doi.org/10.1111/2041-210x.12197
  42. Krosby M, Breckheimer I, John Pierce D, Singleton PH, Hall SA, Halupka KC, Gaines WL, Long RA, McRae BH, Cosentino BL, Schuett-Hames JP (2015) Focal species and landscape “naturalness” corridor models offer complementary approaches for connectivity conservation planning. Landsc Ecol 30(10):2121–2132.  https://doi.org/10.1007/s10980-015-0235-z CrossRefGoogle Scholar
  43. Kukkala AS, Moilanen A (2017) Ecosystem services and connectivity in spatial conservation prioritization. Landsc Ecol 32:5–14CrossRefGoogle Scholar
  44. Lehtomäki J, Moilanen A (2013) Methods and workflow for spatial conservation prioritization using zonation. Environ Model Softw 47(2013):128–137.  https://doi.org/10.1016/j.envsoft.2013.05.001 CrossRefGoogle Scholar
  45. Lindenmayer D, Fischer J, Felton A, Montague-Drake R, Manning AD, Simberloff D, Youngentob K, Saunders D, Wilson D, Felton AM, Blackmore C, Lowe A, Bond S, Munro N, Elliott CP (2007) The complementarity of single-species and ecosystem-oriented research in conservation research. Oikos 116(7):1220–1226.  https://doi.org/10.1111/j.0030-1299.2007.15683.x CrossRefGoogle Scholar
  46. López E, Bocco G, Mendoza M, Duhau E (2001) Predicting land-cover and land-use change in the urban fringe: a case in Morelia city, Mexico. Landsc Urban Plan 55(4):271–285.  https://doi.org/10.1016/S0169-2046(01)00160-8 CrossRefGoogle Scholar
  47. Margules CR, Pressey RL (2000) Systematic conservation planning. Nature 405(6783):243–253CrossRefGoogle Scholar
  48. McRae BH (2006) Isolation by resistance. Evolution 60(8):1551–1561.  https://doi.org/10.1111/j.0014-3820.2006.tb00500.x CrossRefGoogle Scholar
  49. McRae BH (2012) Centrality mapper connectivity analysis software. The Nature Conservancy, Seattle Available at: http://www.circuitscape.org/linkagemapper Google Scholar
  50. McRae BH, Beier P (2007) Circuit theory predicts gene flow in plant and animal populations. Proc Natl Acad Sci 104(50):19885–19890.  https://doi.org/10.1073/pnas.0706568104 CrossRefGoogle Scholar
  51. McRae BH, Kavanagh DM (2011) Linkage mapper connectivity analysis software. The Nature Conservancy, Seattle Available at: http://www.circuitscape.org/linkagemapper Google Scholar
  52. McRae BH, Dickson BG, Keitt TH, Shah VB (2008) Using circuit theory to model connectivity in ecology, evolution, and conservation. Ecology 89(10):2712–2724.  https://doi.org/10.1890/07-1861.1 CrossRefGoogle Scholar
  53. McRae BH, Hall SA, Beier P, Theobald DM (2012) Where to restore ecological connectivity? Detecting barriers and quantifying restoration benefits. PLoS One 7(12):e52604.  https://doi.org/10.1371/journal.pone.0052604 CrossRefGoogle Scholar
  54. McRae BH, Shah VB, Mohapatra TK (2013) Circuitscape 4 User Guide. The Nature Conservancy. http://www.circuitscape.org
  55. McShea WJ, Madison DM (1992) Alternative approached to the study of small mammal dispersal: insights from radiotelemetry. In: Stenseth NC, Lidicker WZ (eds) Animal dispersal: small mammals as a model. Chapman and Hall, London, pp 319–332Google Scholar
  56. Mendoza ME, Granados EL, Geneletti D, Pérez-Salicrup DR, Salinas V (2011) Analysing land cover and land use change processes at watershed level: a multitemporal study in the Lake Cuitzeo watershed, Mexico (1975–2003). Appl Geogr 31(1):237–250.  https://doi.org/10.1016/j.apgeog.2010.05.010 CrossRefGoogle Scholar
  57. Mimet A, Houet T, Julliard R, Simon L (2013) Assessing functional connectivity: a landscape approach for handling multiple ecological requirements. Methods Ecol Evol 4(5):453–463.  https://doi.org/10.1111/2041-210x.12024 CrossRefGoogle Scholar
  58. Moilanen A, Franco AMA, Early RI, Fox R, Wintle B, Thomas CD (2005) Prioritizing multiple-use landscapes for conservation: methods for large multi-species planning problems. Proc R Soc B Biol Sci 272(1575):1885–1891.  https://doi.org/10.1098/rspb.2005.3164 CrossRefGoogle Scholar
  59. Morato RG, Ferraz KMPMB, de Paula RC, Campos CB (2014) Identification of priority conservation areas and potential corridors for jaguars in the Caatinga biome, Brazil. PLoS One 9(4):e92950.  https://doi.org/10.1371/journal.pone.0092950 CrossRefGoogle Scholar
  60. Newman MEJ (2005) A measure of betweenness centrality based on random walks. Soc Networks 27(1):39–54.  https://doi.org/10.1016/j.socnet.2004.11.009 CrossRefGoogle Scholar
  61. Newman MEJ (2010) Networks: an introduction. Oxford University Press, OxfordCrossRefGoogle Scholar
  62. Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190(3–4):231–259.  https://doi.org/10.1016/j.ecolmodel.2005.03.026 CrossRefGoogle Scholar
  63. Pinto N, Keitt TH (2009) Beyond the least-cost path: evaluating corridor redundancy using a graph-theoretic approach. Landsc Ecol 24(2):253–266.  https://doi.org/10.1007/s10980-008-9303-y CrossRefGoogle Scholar
  64. Rabinowitz A, Zeller KA (2010) A range-wide model of landscape connectivity and conservation for the jaguar, Panthera onca. Biol Conserv 143(4):939–945.  https://doi.org/10.1016/j.biocon.2010.01.002
  65. Rayfield B, Pelletier D, Dumitru M, Cardille JA, Gonzalez A (2015) Multipurpose habitat networks for short-range and long-range connectivity: a new method combining graph and circuit connectivity. Methods Ecol Evol 7:222–231.  https://doi.org/10.1111/2041-210X.12470 CrossRefGoogle Scholar
  66. Rodríguez-Soto C, Monroy-Vilchis O, Zarco-González MM (2013) Corridors for jaguar (Panthera onca) in Mexico: conservation strategies. J Nat Conserv 21(6):438–443.  https://doi.org/10.1016/j.jnc.2013.07.002 CrossRefGoogle Scholar
  67. Rudnick D, Ryan S, Beier P, Cushman S, Dieffenbach F, Epps C, Gerber L, Hartter J, Jenness J, Kintsch J, Merenlender A, Perkl R, Preziosi D, Trombulak S (2012) The role of landscape connectivity in planning and implementing conservation and restoration priorities. Issues in ecology 16:20–20Google Scholar
  68. Santini L, Di Marco M, Visconti P, Baisero D, Boitani L, Rondinini C (2013) Ecological correlates of dispersal distance in terrestrial mammals. Hystrix Ital J Mammal 24(2):181–186.  https://doi.org/10.4404/hystrix-24.2-8746 CrossRefGoogle Scholar
  69. Saura S, Pascual-Hortal L (2007) A new habitat availability index to integrate connectivity in landscape conservation planning: comparison with existing indices and application to a case study. Landsc Urban Plan 83(2–3):91–103.  https://doi.org/10.1016/j.landurbplan.2007.03.005 CrossRefGoogle Scholar
  70. Saura S, Rubio L (2010) A common currency for the different ways in which patches and links can contribute to habitat availability and connectivity in the landscape. Ecography 33(3):523–537.  https://doi.org/10.1111/j.1600-0587.2009.05760.x CrossRefGoogle Scholar
  71. Saura S, Torné J (2009) Conefor Sensinode 2.2: a software package for quantifying the importance of habitat patches for landscape connectivity. Environ Model Softw 24(1):135–139.  https://doi.org/10.1016/j.envsoft.2008.05.005 CrossRefGoogle Scholar
  72. Saura S, Estreguil C, Mouton C, Rodríguez-Freire M (2011) Network analysis to assess landscape connectivity trends: application to European forests (1990–2000). Ecol Indic 11(2):407–416.  https://doi.org/10.1016/j.ecolind.2010.06.011 CrossRefGoogle Scholar
  73. Saura S, Bodin Ö, Fortin M-J (2014) EDITOR'S CHOICE: stepping stones are crucial for species' long-distance dispersal and range expansion through habitat networks. J Appl Ecol 51(1):171–182.  https://doi.org/10.1111/1365-2664.12179 CrossRefGoogle Scholar
  74. Theobald DM, Reed SE, Fields K, Soulé M (2012) Connecting natural landscapes using a landscape permeability model to prioritize conservation activities in the United States. Conserv Lett 5(2):123–133.  https://doi.org/10.1111/j.1755-263X.2011.00218.x
  75. Venter O, Fuller RA, Segan DB, Carwardine J, Brooks T, Butchart SHM, Di Marco M, Iwamura T, Joseph L, O'Grady D, Possingham HP, Rondinini C, Smith RJ, Venter M, Watson JEM (2014) Targeting global protected area expansion for imperiled biodiversity. PLoS Biol 12(6):e1001891.  https://doi.org/10.1371/journal.pbio.1001891 CrossRefGoogle Scholar
  76. Warren DL, Seifert SN (2011) Ecological niche modeling in Maxent: the importance of model complexity and the performance of model selection criteria. Ecol Appl 21(2):335–342.  https://doi.org/10.1890/10-1171.1 CrossRefGoogle Scholar
  77. Warren DL, Glor RE, Turelli M (2010) ENMTools: a toolbox for comparative studies of environmental niche models. Ecography 33(3):607–611.  https://doi.org/10.1111/j.1600-0587.2009.06142.x CrossRefGoogle Scholar
  78. Zeigler SL, Fagan WF (2014) Transient windows for connectivity in a changing world. Mov Ecol 2:1–10.  https://doi.org/10.1186/2051-3933-2-1 CrossRefGoogle Scholar
  79. Zeller KA, McGarigal K, Whiteley AR (2012) Estimating landscape resistance to movement: a review. Landsc Ecol 27:777–797.  https://doi.org/10.1007/s10980-012-9737-0 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Camilo A. Correa Ayram
    • 1
    • 2
  • Manuel E. Mendoza
    • 1
  • Andrés Etter
    • 3
  • Diego R. Pérez-Salicrup
    • 4
  1. 1.Centro Investigaciones en Geografía AmbientalUniversidad Nacional Autónoma de MéxicoMoreliaMexico
  2. 2.Instituto de Investigación de Recursos BiológicosBogotáColombia
  3. 3.Departamento de Ecología y Territorio, Facultad de Estudios Ambientales y RuralesPontificia Universidad JaverianaBogotáColombia
  4. 4.Instituto de Investigaciones en Ecosistemas y SustentabilidadUniversidad Nacional Autónoma de MéxicoMoreliaMexico

Personalised recommendations