Regional Environmental Change

, Volume 19, Issue 1, pp 89–100 | Cite as

Implications of climate change for semi-arid dualistic agriculture: a case study in Central Chile

  • Francisco J. FernándezEmail author
  • Maria Blanco
  • Roberto D. Ponce
  • Felipe Vásquez-Lavín
  • Lisandro Roco
Original Article


The nexus between climate change, agriculture, and poverty has become a major topic of concern, especially for dry regions, which represent a large share of the world’s population and ecosystems vulnerable to climate change. In spite of this, to date, few studies have examined the impacts of climate change on agriculture and the adaptation strategies of vulnerable farmers from emerging semi-arid regions with dualist agriculture, in which subsistence farms coexist with commercial farms. This study aims to assess the micro-level impact of climate change and the farm household adaptation strategies in a semi-arid region in Central Chile. To this end, we develop a modelling framework that allows for (1) the assessment of farm-household responses to both climate change effects and adaptation policy scenarios and (2) the identification of local capacities and adaptation strategies. Aggregated results indicate that climate change has a substantial economic impact on regional agricultural income, while the micro-level analysis shows that small-scale farm households are the most vulnerable group. We observe that household characteristics determine to a large extent the adaptation capacity, while an unexpected result indicates that off-farm labour emerges as a powerful option for adapting to climate change. As such, our approach is well suited for ex ante micro-level adaptation analysis and can thereby provide useful insights to guide smart climate policy-making.


Adaptation Climate change Dualistic agriculture Farm household heterogeneity Semi-arid regions 



The authors would like to thank the IDRC-Canada for providing financial support for this research (no. 106924–001). We would also like to thank the Water Research Center for Agriculture and Mining (WARCAM) supported by CONICYT/Chile in the framework of FONDAP 2013—CRHIAM/CONICYT/FONDAP 15130015. Data from the field were collected under a LACEEP (Latin American and Caribbean Environmental Economics Program) research grant.


This work was supported by the International Development Research Centre (IDRC-Canada) [no. 106924–001] and the Water Research Center for Agriculture and Mining (WARCAM) supported by CONICYT/Chile in the framework of FONDAP 2013 [no. 15130015].

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

Supplementary material

10113_2018_1380_MOESM1_ESM.pdf (769 kb)
ESM 1 (PDF 769 kb)
10113_2018_1380_MOESM2_ESM.pdf (814 kb)
ESM 2 (PDF 813 kb)


  1. Aerts JC, Botzen W, Veen A, Krywkow J, Werners S (2008) Dealing with uncertainty in flood management through diversification. Ecol Soc 13:1–17. CrossRefGoogle Scholar
  2. Agrawal A, Perrin N (2009) Climate adaptation, local institutions and rural livelihoods Adapting to climate change:thresholds, values, governance: 350–367Google Scholar
  3. Aleksandrova M, Gain AK, Giupponi C (2016) Assessing agricultural systems vulnerability to climate change to inform adaptation planning: an application in Khorezm, Uzbekistan. Mitig Adapt Strateg Glob Chang 21:1263–1287. CrossRefGoogle Scholar
  4. Baldos ULC, Hertel TW (2015) The role of international trade in managing food security risks from climate change. Food Sec 7:275–290. CrossRefGoogle Scholar
  5. Barnett J, O’Neill SJ (2012) Islands, resettlement and adaptation. Nat Clim Chang 2:8–10. CrossRefGoogle Scholar
  6. Bellon MR, Hodson D, Hellin J (2011) Assessing the vulnerability of traditional maize seed systems in Mexico to climate change. Proc Natl Acad Sci 108:13432–13437. CrossRefGoogle Scholar
  7. Berger T, Troost C (2014) Agent-based modelling of climate adaptation and mitigation options in agriculture. J Agric Econ 65:323–348. CrossRefGoogle Scholar
  8. Berger T, Birner R, McCarthy N, DíAz J, Wittmer H (2006) Capturing the complexity of water uses and water users within a multi-agent framework. Water Resour Manag 21:129–148. CrossRefGoogle Scholar
  9. Blanco M, Ramos F, Van Doorslaer B, Martínez P, Fumagalli D, Ceglar A, Fernández FJ (2017) Climate change impacts on EU agriculture: a regionalized perspective taking into account market-driven adjustments. Agric Syst 156:52–66. CrossRefGoogle Scholar
  10. Bobojonov I, Aw-Hassan A (2014) Impacts of climate change on farm income security in Central Asia: an integrated modeling approach. Agric Ecosyst Environ 188:245–255. CrossRefGoogle Scholar
  11. CASEN (2015) Encuesta “Caracterización Socieconómica Nacional”. Ministerio del Desarrollo Social, Santiago Chile. Available from: <>
  12. CNR (2015) Resultados Ley N° 18.450. Comisión Nacional de Riego. Ministerio de Agricultura, Chile.
  13. Dasgupta P, Morton JF, Dodman D, Karapinar B, Meza F, Rivera-Ferre MG, Toure Sarr A, Vincent KE (2014) Rural areas. In: Field CB, Barros VR, Dokken DJ, Mach KJ, Mastrandrea MD, Bilir TE, Chatterjee M, Ebi KL, Estrada YO, Genova RC, Girma B, Kissel ES, Levy AN, MacCracken S, Mastrandrea PR, White LL (eds) Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 613-657Google Scholar
  14. Davis J, Lopez-Carr D (2010) The effects of migrant remittances on population–environment dynamics in migrant origin areas: international migration, fertility, and consumption in highland Guatemala. Popul Environ 32:216–237. CrossRefGoogle Scholar
  15. Deressa TT, Hassan RM, Ringler C, Alemu T, Yesuf M (2009) Determinants of farmers’ choice of adaptation methods to climate change in the Nile Basin of Ethiopia. Glob Environ Chang 19:248–255. CrossRefGoogle Scholar
  16. Donoso G (2006) Water markets: case study of Chile’s 1981 Water Code. Cien. Inv. Agr. 33(2):157–171 Ciencia e investigación Agraria 33:131–146.
  17. Donoso G (2015) Water pricing in Chile: decentralization and market reforms. In: Water pricing experiences and innovations. Springer, pp 83–96.
  18. Esteve P, Varela-Ortega C, Blanco-Gutiérrez I, Downing TE (2015) A hydro-economic model for the assessment of climate change impacts and adaptation in irrigated agriculture. Ecol Econ 120:49–58. CrossRefGoogle Scholar
  19. Falvey M, Garreaud RD (2009) Regional cooling in a warming world: recent temperature trends in the southeast Pacific and along the west coast of subtropical South America (1979–2006). J Geophys Res Atmos 114.
  20. Fernández FJ, Blanco M (2015) Modelling the economic impacts of climate change on global and European agriculture. Review of economic structural approaches. Economics 9:1. Google Scholar
  21. Fernández FJ, Ponce RD, Blanco M, Rivera D, Vásquez F (2016) Water variability and the economic impacts on small-scale farmers. A farm risk-based integrated modelling approach. Water Resour Manag 30:1357–1373. CrossRefGoogle Scholar
  22. FIA (2010) El cambio climático en el sector silvoagropecuario de Chile. Fundación para la Innovación Agraria, Ministerio de Agricultura de Chile, SantiagoGoogle Scholar
  23. Fischer G, Shah M, Tubiello FN, Van Velhuizen H (2005) Socio-economic and climate change impacts on agriculture: an integrated assessment, 1990–2080. Philos Trans R Soc B Biol Sci 360:2067–2083. CrossRefGoogle Scholar
  24. Fraser ED, Mabee W, Figge F (2005) A framework for assessing the vulnerability of food systems to future shocks. Futures 37:465–479. CrossRefGoogle Scholar
  25. Gassert F, Landis M, Luck M, Reig P, Shiao T (2013) Aqueduct global maps 2.0 Water Resources Institute (WRI): Washington, DC:202011-202012Google Scholar
  26. Gbetibouo GA, Hassan RM, Ringler C (2010) Modelling farmers’ adaptation strategies for climate change and variability: the case of the Limpopo Basin, South Africa. Agrekon 49:217–234. CrossRefGoogle Scholar
  27. Hannah L, Roehrdanz PR, Ikegami M, Shepard AV, Shaw MR, Tabor G, Zhi L, Marquet PA, Hijmans RJ (2013) Climate change, wine, and conservation. Proc Natl Acad Sci 110:6907–6912. CrossRefGoogle Scholar
  28. Hertel TW, Rosch SD (2010) Climate change, agriculture, and poverty. Appl Econ Perspect Policy:ppq016.
  29. Hertel TW, Burke MB, Lobell DB (2010) The poverty implications of climate-induced crop yield changes by 2030. Glob Environ Chang 20:577–585. CrossRefGoogle Scholar
  30. Howitt RE (1995) Positive mathematical programming. Am J Agric Econ 77:329–342. CrossRefGoogle Scholar
  31. INE (2007) Censo Agropecuario. Instituto Nacional de EstadísticaGoogle Scholar
  32. INE (2013) Informe Anual de Estadísticas Agropecuarias. Instituto Nacional de Estadística, ChileGoogle Scholar
  33. Jara-Rojas R, Osorio JD, Manríquez P, Rojas Á (2012) Classification criteria and commercial profile re-definition of the Family Farm Agriculture in Chile, Maule region. Rev Facult Cienc Agrarias 44:143–156Google Scholar
  34. Jones PG, Thornton PK (2003) The potential impacts of climate change on maize production in Africa and Latin America in 2055. Glob Environ Chang 13:51–59. CrossRefGoogle Scholar
  35. Kanellopoulos A, Reidsma P, Wolf J, Van Ittersum M (2014) Assessing climate change and associated socio-economic scenarios for arable farming in the Netherlands: an application of benchmarking and bio-economic farm modelling. Eur J Agron 52:69–80. CrossRefGoogle Scholar
  36. Karfakis P, Lipper L, Smulders M, Meybeck A, Lankoski J, Redfern S, Azzu N, Gitz V The assessment of the socioeconomic impacts of climate change at household level and policy implications. In: Building resilience for adaptation to climate change in the agriculture sector. Proceedings of a Joint FAO/OECD Workshop, Rome, Italy, 23–24 April 2012., 2012. Food and Agriculture Organization of the United Nations (FAO), pp 133–150Google Scholar
  37. Koohafkan P, Stewart BA (2008) Drylands, people and land use. In: Water and cereals in drylands. FAO, pp 5–15Google Scholar
  38. Kostov P, Lingard J (2002) Subsistence farming in transitional economies: lessons from Bulgaria. J Rural Stud 18:83–94. CrossRefGoogle Scholar
  39. Kurukulasuriya P, Rosenthal S (2003) Climate change and agriculture: a review of impacts and adaptations. World Bank, Washington. Accessed 11 January 2017
  40. Louhichi K, Gomez y Paloma S, Belhouchette H, Allen T, Fabre J, Blanco-Fonseca M, Chenoune R, Acs S, Flichman G (2013) Modelling agri-food policy impact at farm-household level in developing countries (FSSIM-Dev) Application to Sierra Leone Joint Research Centre JRC Scientific and Policy Reports.
  41. MMA (2016) National Climate Change Action Plan 2017–2022. Ministry for the Environment, SantiagoGoogle Scholar
  42. Mortimore M, Anderson S, Cotula L, Davies J, Faccer K, Hesse C, Morton JF, Nyangena W, Skinner J, Wolfangel C (2009) Dryland opportunities: a new paradigm for people, ecosystems and development. by: IUCN, Gland, Switzerland, IIED, London, UK and UNDP, New York, USAGoogle Scholar
  43. Morton JF (2007) The impact of climate change on smallholder and subsistence agriculture. Proc Natl Acad Sci 104:19680–19685. CrossRefGoogle Scholar
  44. Nelson GC, Mensbrugghe D, Ahammad H, Blanc E, Calvin K, Hasegawa T, Havlik P, Heyhoe E, Kyle P, Lotze-Campen H, von Lampe M, d’Croz D, van Meijl H, Müller C, Reilly J, Robertson R, Sands R, Schmitz C, Tabeau A, Takahashi K, Valin H, Willenbockel D (2014) Agriculture and climate change in global scenarios: why don’t the models agree. Agric Econ 45:85–101. CrossRefGoogle Scholar
  45. Newton AC, Tejedor N (2011) Principles and practice of forest landscape restoration: case studies from the drylands of Latin America. IUCNGoogle Scholar
  46. ODEPA (2010) Estimación del impacto socioeconómico del cambio climático en el Sector Silvoagropecuario de Chile. Oficina de Estudios y Políticas Agrarias (ODEPA)Google Scholar
  47. ODEPA (2015) Chilean agriculture overview Agrarian Policies and Studies Bureau, Chilean Ministry of Agriculture, ChileGoogle Scholar
  48. OECD/ECLAC (2016) OECD environmental performance reviews: Chile 2016. OECD Publishing.
  49. Olsson L, Opondo M, Tschakert P, Agrawal A, Eriksen S, Ma S, Perch L, Zakieldeen S (2014) Livelihoods and poverty. In: Field CB, Barros VR, Dokken DJ, Mach KJ, Mastrandrea MD, Bilir TE, Chatterjee M, Ebi KL, Estrada YO, Genova RC, Girma B, Kissel ES, Levy AN, MacCracken S, Mastrandrea PR, White LL (eds) Climate change 2014: impacts, adaptation, and vulnerability. Part A: global and sectoral aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 793–832Google Scholar
  50. Pandey R, Kala S, Pandey VP (2015) Assessing climate change vulnerability of water at household level. Mitig Adapt Strateg Glob Chang 20:1471–1485. CrossRefGoogle Scholar
  51. Perch L (2011) Mitigation of what and by what? Adaptation by whom and for whom? Dilemmas in delivering for the poor and the vulnerable in international climate policy, Working Paper, International Policy Centre for Inclusive Growth, No. 79Google Scholar
  52. Phororo H (2001) Food crops or cash crops in the northern communal areas of Namibia: setting a framework for a research agendaGoogle Scholar
  53. Ponce R, Blanco M, Giupponi C (2014) The economic impacts of climate change on the Chilean agricultural sector: a non-linear agricultural supply model. Chilean J Agric Res 74:404–412. CrossRefGoogle Scholar
  54. Ponce RD, Fernández F, Stehr A, Vásquez-Lavín F, Godoy-Faúndez A (2017) Distributional impacts of climate change on basin communities: an integrated modeling approach. Reg Environ Chang 17:1811–1821. CrossRefGoogle Scholar
  55. Reed SC, Coe KK, Sparks JP, Housman DC, Zelikova TJ, Belnap J (2012) Changes to dryland rainfall result in rapid moss mortality and altered soil fertility. Nat Clim Chang 2:752–755. CrossRefGoogle Scholar
  56. Reidsma P, Wolf J, Kanellopoulos A, Schaap BF, Mandryk M, Verhagen J, van Ittersum MK (2015) Climate change impact and adaptation research requires integrated assessment and farming systems analysis: a case study in the Netherlands. Environ Res Lett 10:045004. CrossRefGoogle Scholar
  57. Reilly J, Hohmann N (1993) Climate change and agriculture: the role of international trade. Am Econ Rev 83:306–312. Accessed 25 July 2016
  58. Roco L, Engler A, Bravo-Ureta B, Jara-Rojas R (2014) Farm level adaptation decisions to face climatic change and variability: evidence from Central Chile. Environ Sci Pol 44:86–96. CrossRefGoogle Scholar
  59. Roco L, Engler A, Bravo-Ureta BE, Jara-Rojas R (2015) Farmers’ perception of climate change in Mediterranean Chile. Reg Environ Chang 15:867–879. CrossRefGoogle Scholar
  60. Roco L, Poblete D, Meza F, Kerrigan G (2016) Farmers’ options to address water scarcity in a changing climate: case studies from two basins in Mediterranean Chile. Environ Manag 58:958–971. CrossRefGoogle Scholar
  61. Roco L, Bravo-Ureta B, Engler A, Jara-Rojas R (2017) The impact of climatic change adaptation on agricultural productivity in Central Chile: a stochastic production frontier approach. Sustainability 9:1648. CrossRefGoogle Scholar
  62. Rojas M (2012) Estado del arte de modelos para la investigación del calentamiento global. Informe para Opciones de Mitigación para enfrentar el Cambio Climático. MAPS Chile, ChileGoogle Scholar
  63. Salinas CX, Mendieta J (2013) The cost of mitigation strategies for agricultural adaptation to global change. Mitig Adapt Strateg Glob Chang 18:933–941. CrossRefGoogle Scholar
  64. Santibáñez F, Santibáñez P, Cabrera R, Solis L, Quiroz M, Hernandez J (2008) Impactos productivos en el sector silvoagropecuario de Chile frente a escenarios de Cambio Climático Análisis de vulnerabilidad del sector silvoagropecuario, recursos hídricos y edáficos de Chile frente a escenarios de Cambio Climático Gobierno de Chile. Santiago:1–181Google Scholar
  65. Skjeflo S (2013) Measuring household vulnerability to climate change—why markets matter. Glob Environ Chang 23:1694–1701. CrossRefGoogle Scholar
  66. Skjeflo SW (2014) Measuring household vulnerability to climate change. In: Chen W-Y, Suzuki T, Lackner M (eds) Handbook of climate change mitigation and adaptation. Springer, New York, pp 1–12. Google Scholar
  67. Sumner A (2010) Global poverty and the new bottom billion: what if three-quarters of the world’s poor live in middle-income countries? IDS Working Papers 2010:01–43
  68. Sumner A (2012) Where do the poor live? World Dev 40:865–877. CrossRefGoogle Scholar
  69. Tonhasca A, Byrne DN (1994) The effects of crop diversification on herbivorous insects: a meta-analysis approach. Ecol Entomol 19:239–244. CrossRefGoogle Scholar
  70. UNDP (2008) Desarrollo humano en Chile rural: Seis millones por nuevos caminos. United Nations Development Programme, Santiago, ChileGoogle Scholar
  71. van Vuuren DP, Carter TR (2014) Climate and socio-economic scenarios for climate change research and assessment: reconciling the new with the old. Clim Chang 122:415–429. CrossRefGoogle Scholar
  72. Wang J, Huang X, Zhong T, Chen Z (2013) Climate change impacts and adaptation for saline agriculture in north Jiangsu Province, China. Environ Sci Pol 25:83–93. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Agricultural EconomicsUniversidad Politécnica de Madrid, ETSIAABMadridSpain
  2. 2.School of Agronomy, Faculty of SciencesUniversidad MayorSantiagoChile
  3. 3.School of Business and EconomicsUniversidad del Desarrollo - CONICYT/FONDAP-15130015ConcepciónChile
  4. 4.Millennium Nucleus Center for the Socioeconomic Impact of Environmental PoliciesCESIEPSantiagoChile
  5. 5.Department of Economics and Institute of Applied Regional Economics (IDEAR)Universidad Católica del NorteAntofagastaChile

Personalised recommendations