The climate change dilemma: big science, the globalizing of climate and the loss of the human scale

  • Matthias HeymannEmail author
Original Article


This paper explores a crucial dilemma behind the failure of climate politics: the “dehumanization” of the concept of climate, i.e., the emergence of a predominance of global perspectives, conceptions, and knowledge of climate, which do not translate into local knowledge, experience, and political action. On the one hand, twentieth-century climate science improved understanding of global climate change tremendously. On the other hand, it focused on reductionist quantification and modeling and emphasis on large spatial and temporal scales. This research direction produced large- and global-scale knowledge and can aptly be described as knowledge from above. Climatology in its original Humboldtian conception, in contrast, focused on detailed local information. The human dimension—the support of human affairs—was at the core of it. This understanding of climatology involved priority of local-scale knowledge and can be regarded a version of knowledge from below, which still predominated in the first half of the twentieth century. In my paper, I will explore the question how the understanding of climate was “dehumanized” by globalizing research approaches and scientific conceptions through the twentieth century. Scientific and political interests pushed a globalizing agenda and produced a conceptual and discursive detachment of climate knowledge from human scales. The paper argues that it is important to understand the historical and ideological foundation of knowledge from above and its epistemic and social authority, if we aim at re-establishing recognition of knowledge from below and the lost links between both types of knowledge.


Climate change Climate modeling Scale of knowledge Human scale Globalization Uncertainty Environmental humanities 


  1. Aspray W (1990) John von Neumann and the Origins of Modern Computing. MIT Press, CambridgeGoogle Scholar
  2. Barnes H (2015) This changes everything review—Naomi Klein’s documentary on climate change doesn’t. The Guardian, 17 September 2015, Accessed 16 Aug 2016
  3. Barnett J, Christoff P, Rangan H, Sutherland E (2009) An inconvenient truth, review symposium 2006. Geogr Res 47:204–211. CrossRefGoogle Scholar
  4. Bergeron T (1930) Richtlinien einer dynamischen Klimatologie. Meteorol Z 47:246–262Google Scholar
  5. Bjerknes V (1904) Das Problem der Wettervorhersage, betrachtet vom Standpunkte der Mechanik und der Physik. Meteorol Z 21:1–7Google Scholar
  6. Bretherton FP (1985) Earth system science and remote sensing. Proc IEEE 71:1118–1127CrossRefGoogle Scholar
  7. Callendar GS (1938) The artificial production of carbon dioxide and its influence on climate. Q J Royal Meteorol Soc 64:223–240CrossRefGoogle Scholar
  8. Carey M (2010) In the shadow of melting glaciers: climate change and Andean society. Oxford University Press, OxfordCrossRefGoogle Scholar
  9. Coen DR (2010) Climate and circulation in imperial Austria. J Mod Hist 82:839–875. CrossRefGoogle Scholar
  10. Coen DR (2013) The earthquake observers: Disaster science from Lisbon to Richter. Chicago University Press, ChicagoGoogle Scholar
  11. Coen DR (2011) Imperial climatographies from Tyrol to Turkestan. Osiris 26(2011):45–65. CrossRefGoogle Scholar
  12. Coen DR (2016) Big is a thing of the past: climate change and methodology in the history of ideas. J Hist Ideas 77:305–321. CrossRefGoogle Scholar
  13. Edwards PN (2006) Meteorology as infrastructural globalism. Osiris 21:229–250. CrossRefGoogle Scholar
  14. Edwards PN (2010) A vast machine: computer models, climate data, and the politics of global warming. MIT Press, CambridgeGoogle Scholar
  15. Fleming JR (1998) Historical perspectives on climate change. Oxford University Press, OxfordGoogle Scholar
  16. Fleming JR (2007) The callendar effect: the life and work of Guy Stewart Callendar (1898-1964), The scientist who established the carbon dioxide theory of climate change. American Meteorological Society, BostonCrossRefGoogle Scholar
  17. Fleming JR (2014) Climate, change, history. Environ Hist 20:577–586. CrossRefGoogle Scholar
  18. Flohn H (1936) Neue Wege in der Klimatologie, II: Angewandte Klimatologie. Zeitschr f Erdk 4:337–345Google Scholar
  19. Flohn H (1950) Neuen Anschauungen über die allgemeine Zirkulation der Atmosphäre und ihre klimatische Bedeutung. Erdkunde 4:141–162CrossRefGoogle Scholar
  20. Flohn H (1954) Witterung und Klima in Mitteleuropa, 2nd edn. S. Hirzel Verlag, StuttgartGoogle Scholar
  21. Flohn H (1992) Meteorologie im Übergang, Erfahrungen und Erinnerungen (1931-1991), Bonner Met Abh 40. Dümmler, BonnGoogle Scholar
  22. Friedman RM (1989) Appropriating the Weather, Vilhelm Bjerknes and the Construction of a Modern Meteorology. Cornell Univ. Press, IthacaGoogle Scholar
  23. Gramelsberger G (2009) Conceiving meteorology as the exact science of the atmosphere: Vilhelm Bjerknes’s paper of 1904 as a milestone. Meteorol Z 18:669–673. CrossRefGoogle Scholar
  24. Grove RH (1995) Green imperialism: colonial expansion, tropical island Edens and the origins of environmentalism, 1600-1860. Cambridge University Press, CambridgeGoogle Scholar
  25. Grove RH (1997) Ecology, climate and empire: colonialism and global environmental history, 1400-1940. The White Horse Press, CambridgeGoogle Scholar
  26. Grove RH, Adamson G (2018) El Niño in world history. Palgrave MacMillan, LondonCrossRefGoogle Scholar
  27. Guillemot H (2017) How to develop climate models? The “gamble” of improving climate model parameterizations. In: Heymann M, Gramelsberger G, Mahony M (eds) Cultures of prediction in atmospheric and climate science: epistemic and cultural shifts in computer-based modeling and simulation. Routledge, New York, pp 120–136Google Scholar
  28. Hamblin JD (2013) Arming mother nature: the birth of catastrophic environmentalism. Oxford University Press, OxfordGoogle Scholar
  29. Hansen JE, Johnson D, Lacis A, Lebedoff S, Lee P, Rind D, Russell G (1981) Climate impact of increasing atmospheric carbon dioxide. Science 213(4511):957–966. CrossRefGoogle Scholar
  30. Harper KC (2008) Weather by the numbers. The genesis of modern meteorology. MIT Press, CambridgeCrossRefGoogle Scholar
  31. Hellmann G (1897) Meteorologische Karten. A. Asher & Co., BerlinGoogle Scholar
  32. Heymann M (2009) Klimakonstruktionen. Von der klassischen Klimatologie zur Klimaforschung. NTM, J Hist Sci Tech Med 17:171–197. CrossRefGoogle Scholar
  33. Heymann M (2010a) The evolution of climate ideas and knowledge. WIREs Clim Change 1:581–597. CrossRefGoogle Scholar
  34. Heymann M (2010b) Understanding and misunderstanding computer simulation: the case of atmospheric and climate science—an introduction. Stud Hist Phil Mod Phys 41:193–200. CrossRefGoogle Scholar
  35. Heymann M (2012) Constructing evidence and trust: how did climate scientists’ confidence in their models and simulations emerge? In: Hastrup K, Skrydstrup M (eds) The social life of climate change models: anticipating nature. Routledge, New York, pp 203–224Google Scholar
  36. Heymann M, Hundebøl NR (2017) From heuristic to predictive: making climate models political instruments. In: Heymann M, Gramelsberger G, Mahony M (eds) Cultures of prediction in atmospheric and climate science: epistemic and cultural shifts in computer-based modeling and simulation. Routledge, New York, pp 100–119CrossRefGoogle Scholar
  37. Heymann M, Gramelsberger G, Mahony M (2017) Key characteristics of cultures of prediction. In: Heymann M, Gramelsberger G, Mahony M (eds) Cultures of prediction in atmospheric and climate science: epistemic and cultural shifts in computer-based modeling and simulation. Routledge, New York, pp 18–41CrossRefGoogle Scholar
  38. Holm P, Goodsite ME, Cloetingh S, Agnoletti M, Moldan B, Lang DJ, Leemans R, Moeller JO, Buendí MP, Pohl W, Scholz RW, Sors A, Vanheusden B, Yusoff K, Zondervan R (2012) Collaboration between the natural, social and human sciences in global change research. Environ Sci Pol 28:25–35. CrossRefGoogle Scholar
  39. Hulme M (2008) Geographical work at the boundaries of climate change. Trans Inst Brit Geogr NS 35:5–11. CrossRefGoogle Scholar
  40. Hulme M (2010) Problems with making and governing global kinds of knowledge. Glob Environ Chang 20:558–564. CrossRefGoogle Scholar
  41. Hulme M (2016) Weathered: cultures of climate. Sage Publications, LondonGoogle Scholar
  42. Jacobson HK, Price M (1990) A framework for research on the human dimensions of global environmental change. ISSC/UNESCO, ParisGoogle Scholar
  43. Jasanoff S (2010) A new climate for society. Theory Cult Soc 27:233–253. CrossRefGoogle Scholar
  44. Jasanoff S, Martello ML (eds) (2004) Earthly politics: local and global in environmental governance. MIT Press, CambridgeGoogle Scholar
  45. Jouzel J, Masson-Delmotte V, Cattani O, Dreyfus G, Falourd S, Hoffmann G, Minster B, Nouet J, Barnola JM, Chappellaz J, Fischer H, Gallet JC, Johnsen S, Leuenberger M, Loulergue L, Luethi D, Oerter H, Parrenin F, Raisbeck G, Raynaud D, Schilt A, Schwander J, Selmo E, Souchez R, Spahni R, Stauffer B, Steffensen JP, Stenni B, Stocker TF, Tison JL, Werner M, Wolff EW (2007) Orbital and millennial Antarctic climate variability over the past 800,000 years. Science 317(5839):793–796. CrossRefGoogle Scholar
  46. Khrgian AK (1970) Meteorology, a historical survey, 2nd edn. Keter Press, Jerusalem (Russian original 1959)Google Scholar
  47. Knobloch E (2007) Alexander von Humboldt—the explorer and the scientist. Centaurus 49:3–14. CrossRefGoogle Scholar
  48. Köppen W (1884) Die Wärmezonen der Erde, nach der Dauer der heissen, gemässigten und kalten Zeit und nach der Wirkung der Wärme auf die organische Welt betrachtet. Meteorol Z 1:215–226Google Scholar
  49. Köppen WP (1895) Die gegenwärtige Lage und die neueren Fortschritte der Klimatologie. Geogr Z 1:613–628Google Scholar
  50. Köppen WP (1936) Das geographische System der Klimate. In: Köppen W, Geiger R (eds) Handbuch der Klimatologie, vol Bd. I. Gebr Borntröger, Berlin, pp C1–C44Google Scholar
  51. Lehmann PN (2015) Whither climatology? Brückner’s climate oscillations, data debates, and dynamic climatology. Hist Metall 7:49–70Google Scholar
  52. Lehmann PN (2017) Losing the Field: Franz Thorbecke and (Post-)Colonial Climatology in Germany. Hist Metall 8:145–158Google Scholar
  53. Lewis JM (1998) Clarifying the dynamics of the general circulation, Phillips’s 1956 experiment. Bull Am Meteorol Soc 79:39–60.<0039:CTDOTG>2.0.CO;2 CrossRefGoogle Scholar
  54. Livingstone DN (1993) The geographical tradition: episodes in the history of a contested enterprise. Blackwell Publishers, OxfordGoogle Scholar
  55. Livingstone DN (2002) Race, space and moral climatology: notes toward a genealogy. J Hist Geogr 28:159–180. CrossRefGoogle Scholar
  56. Lynch P (2006) The emergence of numerical weather prediction, Richardson’s dream. Cambridge University Press, CambridgeGoogle Scholar
  57. Mahony M (2016) For an empire of ‘all types of climate’: meteorology as an imperial science. J Hist Geogr 51:29–39. CrossRefGoogle Scholar
  58. Mehta L, Srivastava S, Adam HN, Alankar, Bose S, Ghosh U, Kumar VV (2018) Climate change and uncertainty from “above” and “below”: perspectives from India. Reg Env Change. (under review)Google Scholar
  59. Nebeker F (1995) Calculating the weather: meteorology in the 20th century. Academic Press, San DiegoGoogle Scholar
  60. Palsson G, Szerszynski B, Sörlin S, Marks J, Avril B, Crumley C, Hackmann H, Holm P, Ingram J, Kirman A, Buendía MP, Weehuizen R (2012) Reconceptualizing the ‘Anthropos’ in the Anthropocene: integrating the social sciences and humanities in global environmental change research. Environ Sci Pol 28:3–13. CrossRefGoogle Scholar
  61. Petterssen S (1950) Some aspects of the general circulation of the atmosphere. Cent Proc Roy Met Soc, p 120–155Google Scholar
  62. Phillips N (1956) The general circulation of the atmosphere: a numerical Experiment. Quart J R Met Soc 82:123–164. CrossRefGoogle Scholar
  63. Radcliffe SA, Watson EE, Simmons I, Fernández-Armesto F, Sluyter A (2010) Environmentalist thinking and/in geography. Progr Hum Geogr 34:98–116. CrossRefGoogle Scholar
  64. Randall D, Khairoutdinov M, Arakawa A, Grabowski W (2003) Breaking the cloud parameterization deadlock. Bull Am Meteorol Soc 84:1547–1564. CrossRefGoogle Scholar
  65. Rebetez M (1996) Public expectations as an element of human perception of climate change. Clim Chang 32:495–509. CrossRefGoogle Scholar
  66. Richardson LF (1922/2007) Weather prediction by numerical process. reprint of 1st ed 1922. Cambridge University Press, CambridgeGoogle Scholar
  67. Rusnock AA (2002) Vital accounts: quantifying health and population in eighteenth-century England and France. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  68. Shackley S, Young P, Parkinson S, Wynne B (1998) Uncertainty, complexity and concepts of good science in climate change modeling: are GCMs the best tools? Clim Chang 38:159–205. CrossRefGoogle Scholar
  69. Sörlin S (2012) Environmental humanities: why should biologists interested in the environment take the humanities seriously? BioScience 62:788–789. CrossRefGoogle Scholar
  70. Stern N (2006) The economics of climate change. Cambridge University Press, CambridgeGoogle Scholar
  71. Stern PC, Young OR, Druckman D (1992) Global environmental change: understanding the human dimensions. National Academy Press, WashingtonGoogle Scholar
  72. Turner BL, Kasperson RE, Meyer WB, Dow KM, Golding D, Kasperson JX, Mitchell RC, Ratick SJ (1990) Two types of global environmental change: definitional and spatial scale issues in their human dimensions. Glob Environ Chang 1:14–22CrossRefGoogle Scholar
  73. von Hann J (1908) Handbuch der Klimatologie, vol 1, 3rd edn. Engelhorn, StuttgartGoogle Scholar
  74. von Humboldt A (1845) Kosmos. Entwurf einer physischen Weltbeschreibung, vol 1. Cottascher Verlag, StuttgartCrossRefGoogle Scholar
  75. Weart SR (2000) Interview with James Hansen, Center for History of Physics. American Institute of Physics, College Park,
  76. Weart SR (2008) The discovery of global warming. Harvard University Press, Cambridge also at: CrossRefGoogle Scholar
  77. Weickmann L (1944) Witterungslehre zu Goethes Zeit und heute. Vortrag gehalten vor der Goethe-Gesellschaft im November 1942. Goethe-Gesellschaft, LeipzigGoogle Scholar
  78. Wilcock AA (1968) Köppen after fifty years. Ann Assoc Am Geogr 58(1):12–28CrossRefGoogle Scholar
  79. WMO (1979) Proceedings of the World Climate Conference: a conference of experts on climate and mankind, Geneva, 12–23 February 1979. WMO, GenevaGoogle Scholar
  80. Worster D (1994) Nature’s economy: a history of ecological ideas. Cambridge University Press, CambridgeGoogle Scholar
  81. Wynne B (2016) Reconciling top down and bottom up uncertainties in knowledge, with power and conflict of purpose or interest. Presentation at the Workshop Climate Change and Uncertainty from Above and Below, 27–28 January, New DelhiGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Centre for Science StudiesAarhus UniversityAarhus CDenmark

Personalised recommendations